Navy uses high power laser to accelerate thin plastic foils to over 1180 kilometers per second

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving “Highest Projectile Velocity” of greater than 1,000 kilometers per second (km/s), a speed equivalent to two-and-a-quarter million miles per hour.

“The impact of the highly accelerated target on a stationary foil generated thermonuclear fusion neutrons whose energy spread indicated that a gigabar—that’s the pressure of a billion atmospheres—was achieved in the collision,” said Dr. Max Karasik, NRL Laser Plasma Branch. “The results highlight the advantages of a krypton-fluoride laser in efficiently generating uniform pressures required for fuel compression in inertial confinement fusion.”

In the experiments, thin plastic foils were accelerated to 1,000 km/s over a distance of less than a millimeter. The moving foils then collided with a stationary foil, generating thermo-nuclear temperatures and neutrons from fusion reactions. The high ablative pressure applied to compress and accelerate targets is used in inertial confinement fusion and high energy density research.

NRL received the official Guinness World Records certificate, February 2014, with distinction given to the research that “…probe[s] possibilities for future clean-energy sources.” However, since the 2009 experiment, Karasik says NRL has raised the bar. With an improved laser pulse shape, researchers at the Nike laser facility have reached target velocities of 1,180 km/s.

Final amplifier of the Nike laser where laser beam energy is increased from 150 J to ~5 kJ by passing through a krypton – fluorine – argon gas mixture excited by irradiation with two opposing 670,000 volt electron beams.

The Nike laser is a two to three kilojoule (kJ) KrF system that incorporates beam smoothing by induced spatial incoherence (ISI) to achieve one percent non-uniformity in single beams and 0.16 percent non-uniformity for 44 overlapped target beams. The facility routinely conducts experiments in support of inertial confinement fusion, laser-matter interactions, and high energy density physics.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

Subscribe on Google News