Neutral Particle Beam Magsails for fast interplanetary delivery of small cargos

At Centauri Dreams, James Benford looks more closely at particle beam driven magsails. He has found a problem for interstellar missions but promise for interplanetary missions and an interplanetary infrastructure.

The first column shows a fast interplanetary probe, with high interplanetary-scale velocity, acceleration 100 m/sec2, 10 gees, which a nonhuman cargo can sustain. Time required to reach this velocity is 27 minutes, at which time the sail has flown to 135,000 km. The power required for the accelerator is 24GW. If the particle energy is 50MeV, well within state-of-the-art, then the required current is 490A. How long would an interplanetary trip take? If we take the average distance to Mars as 1.5 AU, the probe will be there in 8.7 days. Therefore this qualifies as a Mars Fast Track accelerator.

An advanced probe, at 100 gees acceleration, requires 0.78 TW power and the current is 15 kA. It takes only 34 hours to reach Mars. At such speeds the outer solar system is accessible in a matter of weeks. For example, Saturn can be reached by a direct ascent in the time as short as 43 days.

A very advanced probe, an Interstellar Precursor, at 1000 gees acceleration, reaches 0.8% of light speed. It has a power requirement 34 TW and the current is 676 kA. It takes only 8 hours to reach Mars. At such speeds the outer solar system is accessible in a matter of days. For example, Saturn can be reached by a direct ascent in the time as short as a day. The Oort Cloud at 2,000 AU, can be reached in 6 years.

James Benford replied to some of the Centauri Dream commenters in another Centauri Dream article.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks