Paper suggests NASA Warping space time experiments needs about 1 million times better detection or to alter the design to increase the possible effect

Arvix paper contends the spacetime distortions resulting from the experimentally obtainable electric field of a parallel plate capacitor configuration cannot be detected by the White-Juday Warp Field Interferometer. Any post-processing results indicating a vanishing, non-zero difference between the charged and uncharged states of the capacitor are due to local effects rather than spacetime perturbations.

The White-Juday Warp Field Interferometer (WJWFI), which is a modified, seismically-isolated Fabry-Pérot interferometer, has been developed to detect spacetime distortions created by a ~10^6 V·m-1 static electric field. The interferometer employs a 6328 Å HeNe laser, in which one of the two beams passes between two electrically charged parallel plates. The beams are recombined on a CCD array.

However, the spacetime distortions produced by such an electric field are exceptionally below the detection threshold of all present-day interferometry techniques. Additionally, an analysis of refractive index variations, due to plausible air temperature differences in the laboratory, was conducted, and the resulting beam refraction is shown to be potentially above the lower
limit of detectability of the WJWFI.

The WJWFI is totally incapable of detecting the minute distortions of spacetime produced by a 4.4 J·m-3 electric field. The static electric field of equivalent radius required to achieve the microlensing detection threshold would be ~10^12 V·m-1. Therefore, any vanishing non-zero difference between the charged and uncharged states of the plates is clearly due other factors.

Conclusion

The WJWFI is totally incapable of detecting the minute distortions of spacetime produced by a 4.4 J·m-3 electric field. The static electric field of equivalent radius required to achieve the microlensing detection threshold would be ~10^12 V·m-1. Therefore, any vanishing non-zero difference between the charged and uncharged states of the plates is clearly due other factors.

Variations in temperature were shown to produce potentially detectable changes in the refractive index of air, which could result in occasional spurious interference fringes. Although a more rigorous model, which considers a time- and spatially-changing index of refraction gradient along the interferometer arm would result in a smaller lateral beam deviation, the purpose for which the WJWFI is intended has been shown to be unachievable.

Thus, were any signals to appear in the White-Juday Warp Field Interferometer, they would most often be attributable to either electronic noise or the classical electrodynamics interaction between the ionized air between the plates and the electromagnetic radiation of the laser.

The following background material was written by Nextbigfuture in 2011.

Harold White’s presentation on warp drive from the 100 year Starship symposium

Warp Field Mechanics 101 by Sonny White (33 pages)

This paper will begin with a short review of the Alcubierre warp drive metric and describes how the phenomenon might work based on the original paper. The canonical form of the metric was developed and published in which provided key insight into the field potential and boost for the field which remedied a critical paradox in the original Alcubierre concept of operations. A modified concept of operations based on the canonical form of the metric that remedies the paradox is presented and discussed. The idea of a warp drive in higher dimensional space-time (manifold) will then be briefly considered by comparing the null-like geodesics of the Alcubierre metric to the Chung-Freese metric to illustrate the mathematical role of hyperspace coordinates. The net effect of using a warp drive “technology” coupled with conventional propulsion systems on an exploration mission will be discussed using the nomenclature of early mission planning. Finally, an overview of the warp field interferometer test bed being implemented in the Advanced Propulsion Physics Laboratory: Eagleworks (APPL:E) at the Johnson Space Center will be detailed. While warp field mechanics has not had a “Chicago Pile” moment, the tools necessary to detect a modest instance of the phenomenon are near at hand.

A good question to ask at the end of this discussion is can an experiment be designed to generate and measure a very modest instantiation of a warp field? As briefly discussed by the author in, a Michelson-Morley interferometer may be a useful tool for the detection of such a phenomenon. The photo above depicts a warp field interferometer experiment that uses a 633nm He-Ne laser to evaluate the effects of York Time perturbations within a small (~1cm) spherical region. Across 1cm, the experimental rig should be able to measure space perturbations down to ~1 part in 10,000,000. As previously discussed, the canonical form of the metric suggests that boost may be the driving phenomenon in the process of physically establishing the phenomenon in a lab. Further, the energy density character over a number of shell thicknesses suggests that a toroidal donut of boost can establish the spherical region. Based on the expected sensitivity of the rig, a 1cm diameter toroidal test article (something as simple as a very highvoltage capacitor ring) with a boost on the order of 1.0000001 is necessary to generate an effect that can be effectively detected by the apparatus. The intensity and spatial distribution of the phenomenon can be quantified using 2D analytic signal techniques comparing the detected interferometer fringe plot with the test device off with the detected plot with the device energized. Figure 5 also has a numerical example of what the before and after fringe plots may look like with the presence of a spherical disturbance of the strength just discussed. While this would be a very modest instantiation of the phenomenon, it would likely be Chicago pile moment for this area of research.

In this paper, the mathematical characteristics of the Alcubierre metric were introduced and discussed, the canonical form was presented and explored, and the idea of a warp drive was even considered within a higher dimensional manifold. The driving phenomenon was conjectured to be the boost field as opposed to purely the York Time which resolved the asymmetry/symmetry paradox. An early idea of a warp drive was briefly discussed within the context of mission planning to elucidate the impact such a subsystem would have on the mission trade space. Finally, a laboratory experiment that might produce a modest instantiation of the phenomenon was discussed. While it would appear that the model has nearly all the desirable mathematical characteristics of a true interstellar space drive, the metric has one less appealing characteristic – it violates all three energy conditions (strong, weak, and dominant) because of the need for negative energy density. This does not necessarily preclude the idea as the cosmos is continually experiencing inflation as evidenced by observation, but the salient question is can the idea be engineered to a point that it proves useful for exploration. A significant finding from this effort new to the literature is that for a target velocity and spacecraft size, the peak energy density requirement can be greatly reduced by allowing the wall thickness of the warp bubble to increase. Analysis performed in support of generating the plots also indicate a corresponding reduction in total energy when converted from geometric units (G=c=1) to SI units, but still show that the idea will not be an easy task. So it remains to be seen if the evolution of the phrase penned by J. M. Barrie in the story Peter Pan will ever be uttered on the bridge of some majestic starship just embarking on a daring mission of deep space exploration taking humanity beyond the bounds of this solar system and boldly going out into the stars: “2nd star to the right, straight on till morning…”

Space Warp equations are being tested using an instrument called the White-Juday Warp Field Interferometer. At Johnson Space Center, Eagleworks has initiated an interferometer test bed that will try to generate and detect a microscopic instance of a little warp bubble. Although this is just a tiny instance of the phenomena, it will be existence proof for the idea of perturbing space time—a “Chicago pile” moment, as it were. Recall that December of 1942 saw the first demonstration of a controlled nuclear reaction that generated a whopping half watt. This existence proof was followed by the activation of a ~ four megawatt reactor in November of 1943. Existence proof for the practical application of a scientific idea can be a tipping point for technology development.

In the past, the literature has quoted Jupiter amounts of exotic matter/negative pressure necessary to implement a “useful” warp bubble, making the idea mostly of academic interest at best. However, sensitivity analysis started by White in 2011 and completed this year has shown that the energy requirements can be greatly reduced by first optimizing the warp bubble thickness, and further by oscillating the bubble intensity to reduce the stiffness of space time. The results, to be presented at the 2012 100 Year Starship Symposium in Houston, will discuss the findings in detail, but have yielded a reduction from Jupiter amount of exotic matter to an amount smaller than the Voyager 1 spacecraft (500kg) for a 10-meter bubble with an effective velocity of 10c, which is a handy improvement.

The Eagleworks Q-thruster experiment attempts to utilize applied scientific research in the fields of quantum vacuum, gravitation, the nature of space-time, and other fundamental phenomenon to realize the possibility of an ultra-high Isp propulsion solution. Through these underpinnings, it is mathematically possible to employ the vacuum particle/anti-particle “sea” and utilize it as propellant reaction mass. Previous QVPT tests have generated possible thrust signals in the milli-Newton range and hinted at Isp’s on the order of 10^12 seconds. This iteration aims to validate or refute the present evidence in order to push forward in pursuit of breakthrough propulsion physics. For the exhibit, we will present a conceptual visualization of these effects, and provide a summary of present data and future plans.

Talk Polywell comment –

A “boost” of 100, combined with a ‘starter velocity’ of 0.1c, yields an apparent velocity of 10c.

100 * 0.1 = 10

Talk Polywell has a comment from Paul March who has worked on Mach Effect propulsion and nuclear propulsion.

If Dr. White’s 4D+ theoretical conjecture on this warp field topic is correct, and I say if for we have no data yet to back it up until our back-ordered replacement laser shows up in the lab, we should be able to make the required inertially exotic mass requirement as small as desired dependent on the selected starting velocity, desired boost factor and how fast we can vary the warp-field’s potential energy field about its mean value, which is dependent on how much power our RF generators can handle. However the higher the effective boost velocity becomes, the more ac potential energy one has to store in the warp-field and we all know what can happen to pressure vessels when they are pushed too far…

We have covered the initiation of this project 6 months ago.

How much energy is in the Quantum Vacuum? Using the Plank frequency as upper cutoff yields a prediction of ~10^114 J/m3. Current astronomical observations put the critical density at 1*10^-26 kg/m3. The vast difference between QED prediction and observation is not currently understood. Is there a way to utilize this sea of virtual particles and photons (radiation pressure) to transfer momentum from a spacecraft to the vacuum?

A number of approaches have been detailed in the literature and synopsized: Vacuum sails that develop a net force by having materials on either side with different optical properties; Inertia control by altering vacuum energy density and reducing total spacecraft mass thus minimizing kinetic energy and amount of work needed to accelerate a spacecraft; and dynamic systems that make use of the dynamic Casimir force to generate a net force.

Recent models developed by Harold White suggests that there are ways to increase the net force, and these models have been validated against data at both the cosmological scale, the quantum level, and test devices have been fabricated/ tested in the lab and found to agree with model predictions.

NASA Eagleworks

(H/T Crowlspace)

ASA/JSC is implementing an advanced propulsion physics laboratory, informally known as “Eagleworks”, to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the “Breakthrough Propulsion” objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (less than 1 micronewton), and commission the facility with an existing Quantum Vacuum Plasma Thruster. To date, the QVPT line of research has produced data suggesting very high specific impulse coupled with high specific force. If the physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a “Chicago pile” moment for this area of physics.

Eagleworks Laboratories: Advanced Propulsion Physics Research, Dr. Harold “Sonny” White, Paul March, Nehemiah Williams, William O’Neill NASA Johnson Space Center (9 pages)

How does a Q thruster work

How does a Q-thruster work? A Q-thruster uses the same principles and equations of motion that a conventional plasma thruster would use, namely Magnetohydrodynamics (MHD), to predict propellant behavior. The virtual plasma is exposed to a crossed E and B-field which induces a plasma drift of the entire plasma in the ExB direction which is orthogonal to the applied fields. The difference arises in the fact that a Q-thruster uses quantum vacuum fluctuations as the fuel source eliminating the need to carry propellant. This suggests much higher specific impulses are available for QVPT systems limited only by their power supply’s energy storage densities. Historical test results have yielded thrust levels of between 1000-4000 micro-Newtons, specific force performance of 0.1N/kW, and an equivalent specific impulse of ~1×10^12 seconds. Figure 4 shows a test article and the thrust trace from a 500g load cell.

The near term focus of the laboratory work is focused on gathering performance data to support development of a Q-thruster engineering prototype targeting Reaction Control System (RCS) applications with force range of 0.1-1 N with corresponding input power range of 0.3-3 kW. Up first will be testing of a refurbished test article to duplicate historical performance on the high fidelity torsion pendulum (1-4 mN at 10 to 40 W). The team is maintaining a dialogue with the ISS national labs office for an on orbit DTO.

How would Q-thrusters revolutionize human exploration of the outer planets? Making minimal extrapolation of performance, assessments show that delivery of a 50 mT payload to Jovian orbit can be accomplished in 35 days with a 2 MW power source [specific force of thruster (N/kW) is based on potential measured thrust performance in lab, propulsion mass (Q-thrusters) would be additional 20 mT (10 kg/kW), and associate power system would be 20 mT (10 kg/kW)]. Q-thruster performance allows the use of nuclear reactor technology that would not require MHD conversion or other more complicated schemes to accomplish single digit specific mass performance usually required for standard electric propulsion systems to the outer solar system. In 70 days, the same system could reach the orbit of Saturn. Figure 5 illustrates the performance capabilities of this advanced propulsion concept for transforming outer solar system exploration

Warp Field Interferometer

Recent work published by White suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. The canonical form of the Alcubierre metric as derived in provides new insight into how a test device could be constructed to generate say a spherical region of perturbation of ~1 cm diameter. Figure 5 depicts the graphical layout of a warp field interferometer experiment capable of measuring possible York Time perturbations within a small (~1cm) spherical region. Across 1cm, the experimental rig should be able to measure space perturbations down to ~1 part in 10,000,000. As previously discussed, the canonical form of the metric suggests that boost may be the driving phenomenon in the process of physically establishing the phenomenon in a lab. Further, the energy density character over a number of shell thicknesses suggests that a toroidal donut of boost can establish the spherical region. Based on the expected sensitivity of the rig, a 1cm diameter toroidal test article (something as simple as a very high-voltage capacitor ring) with a boost on the order of 1.0000001 is necessary to generate an effect that can be effectively detected by the apparatus. The intensity and spatial distribution of the phenomenon can be quantified using 2D analytic signal techniques comparing the detected interferometer fringe plot with the test device off with the detected plot with the device energized

Harold White work

Warp Field Mechanics 101 (33 pages)

White, H., “A Discussion on space-time metric engineering,” Gen. Rel. Grav. 35, 2025-2033 (2003).

White, H., Davis, E., “The Alcubierre Warp Drive in Higher Dimensional Space-time,” in proceedings of Space Technology and Applications International Forum (STAIF 2006), edited by M. S. El-Genk, American Institute of Physics, Melville, New York, (2006).