Progress towards Revolutionary Superstrong and superlight Nanoceramic lattices

Imagine a balloon that could float without using any lighter-than-air gas. Instead, it could simply have all of its air sucked out while maintaining its filled shape. Such a vacuum balloon, which could help ease the world’s current shortage of helium, can only be made if a new material existed that was strong enough to sustain the pressure generated by forcing out all that air while still being lightweight and flexible.

Caltech materials scientist Julia Greer and her colleagues are on the path to developing such a material and many others that possess unheard-of combinations of properties. For example, they might create a material that is thermally insulating but also extremely lightweight, or one that is simultaneously strong, lightweight, and nonbreakable—properties that are generally thought to be mutually exclusive.

Science – Strong, lightweight, and recoverable three-dimensional ceramic nanolattices

Ceramics have some of the highest strength- and stiffness-to-weight ratios of any material but are suboptimal for use as structural materials because of their brittleness and sensitivity to flaws. They demonstrated the creation of structural metamaterials composed of nanoscale ceramics that are simultaneously ultralight, strong, and energy-absorbing and can recover their original shape after compressions in excess of 50% strain. Hollow-tube alumina nanolattices were fabricated using two-photon lithography, atomic layer deposition, and oxygen plasma etching. Structures were made with wall thicknesses of 5 to 60 nanometers and densities of 6.3 to 258 kilograms per cubic meter. Compression experiments revealed that optimizing the wall thickness-to-radius ratio of the tubes can suppress brittle fracture in the constituent solid in favor of elastic shell buckling, resulting in ductile-like deformation and recoverability.

If researchers can figure out how to make the stuff in large quantities, it could be used as a structural material for making planes and trucks, as well as in battery electrodes.

To make the ceramic nano-trusses, Greer’s lab uses a technique called two-photon interference lithography. It’s akin to a very low-yield 3-D laser printer.

First they use this method to create the desired structure, a lattice, out of a polymer. The polymer lattice is then coated with a ceramic such as alumina. Oxygen plasma etches out the polymer, leaving behind a lattice of hollow ceramic tubes.

Greer’s lab showed that by changing the thickness of the tube walls, it’s possible to control how the material fails. When the walls are thick, the ceramic shatters under pressure as expected. But trusses with thinner walls, just 10 nanometers thick, buckle when compressed and then recover their shape.

Greer says she is collaborating with German electronics company Bosch to apply her designs to lithium-ion batteries.

Greer and her students used their technique to produce what they call three-dimensional nanolattices that are formed by a repeating nanoscale pattern. After the patterning step, they coated the polymer scaffold with a ceramic called alumina (i.e., aluminum oxide), producing hollow-tube alumina structures with walls ranging in thickness from 5 to 60 nanometers and tubes from 450 to 1,380 nanometers in diameter.

Greer’s team next wanted to test the mechanical properties of the various nanolattices they created. Using two different devices for poking and prodding materials on the nanoscale, they squished, stretched, and otherwise tried to deform the samples to see how they held up.

They found that the alumina structures with a wall thickness of 50 nanometers and a tube diameter of about 1 micron shattered when compressed. That was not surprising given that ceramics, especially those that are porous, are brittle. However, compressing lattices with a lower ratio of wall thickness to tube diameter—where the wall thickness was only 10 nanometers—produced a very different result.

“You deform it, and all of a sudden, it springs back,” Greer says. “In some cases, we were able to deform these samples by as much as 85 percent, and they could still recover.”

Most brittle materials such as ceramics, silicon, and glass shatter because they are filled with flaws—imperfections such as small voids and inclusions. The more perfect the material, the less likely you are to find a weak spot where it will fail. Therefore, the researchers hypothesize, when you reduce these structures down to the point where individual walls are only 10 nanometers thick, both the number of flaws and the size of any flaws are kept to a minimum, making the whole structure much less likely to fail.

“One of the benefits of using nanolattices is that you significantly improve the quality of the material because you’re using such small dimensions,” Greer says. “It’s basically as close to an ideal material as you can get, and you get the added benefit of needing only a very small amount of material in making them.”

The Greer lab is now aggressively pursuing various ways of scaling up the production of these so-called meta-materials.

15 pages of supplemental material

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

Subscribe on Google News

Progress towards Revolutionary Superstrong and superlight Nanoceramic lattices

Imagine a balloon that could float without using any lighter-than-air gas. Instead, it could simply have all of its air sucked out while maintaining its filled shape. Such a vacuum balloon, which could help ease the world’s current shortage of helium, can only be made if a new material existed that was strong enough to sustain the pressure generated by forcing out all that air while still being lightweight and flexible.

Caltech materials scientist Julia Greer and her colleagues are on the path to developing such a material and many others that possess unheard-of combinations of properties. For example, they might create a material that is thermally insulating but also extremely lightweight, or one that is simultaneously strong, lightweight, and nonbreakable—properties that are generally thought to be mutually exclusive.

Science – Strong, lightweight, and recoverable three-dimensional ceramic nanolattices

Ceramics have some of the highest strength- and stiffness-to-weight ratios of any material but are suboptimal for use as structural materials because of their brittleness and sensitivity to flaws. They demonstrated the creation of structural metamaterials composed of nanoscale ceramics that are simultaneously ultralight, strong, and energy-absorbing and can recover their original shape after compressions in excess of 50% strain. Hollow-tube alumina nanolattices were fabricated using two-photon lithography, atomic layer deposition, and oxygen plasma etching. Structures were made with wall thicknesses of 5 to 60 nanometers and densities of 6.3 to 258 kilograms per cubic meter. Compression experiments revealed that optimizing the wall thickness-to-radius ratio of the tubes can suppress brittle fracture in the constituent solid in favor of elastic shell buckling, resulting in ductile-like deformation and recoverability.

If researchers can figure out how to make the stuff in large quantities, it could be used as a structural material for making planes and trucks, as well as in battery electrodes.

To make the ceramic nano-trusses, Greer’s lab uses a technique called two-photon interference lithography. It’s akin to a very low-yield 3-D laser printer.

First they use this method to create the desired structure, a lattice, out of a polymer. The polymer lattice is then coated with a ceramic such as alumina. Oxygen plasma etches out the polymer, leaving behind a lattice of hollow ceramic tubes.

Greer’s lab showed that by changing the thickness of the tube walls, it’s possible to control how the material fails. When the walls are thick, the ceramic shatters under pressure as expected. But trusses with thinner walls, just 10 nanometers thick, buckle when compressed and then recover their shape.

Greer says she is collaborating with German electronics company Bosch to apply her designs to lithium-ion batteries.

Greer and her students used their technique to produce what they call three-dimensional nanolattices that are formed by a repeating nanoscale pattern. After the patterning step, they coated the polymer scaffold with a ceramic called alumina (i.e., aluminum oxide), producing hollow-tube alumina structures with walls ranging in thickness from 5 to 60 nanometers and tubes from 450 to 1,380 nanometers in diameter.

Greer’s team next wanted to test the mechanical properties of the various nanolattices they created. Using two different devices for poking and prodding materials on the nanoscale, they squished, stretched, and otherwise tried to deform the samples to see how they held up.

They found that the alumina structures with a wall thickness of 50 nanometers and a tube diameter of about 1 micron shattered when compressed. That was not surprising given that ceramics, especially those that are porous, are brittle. However, compressing lattices with a lower ratio of wall thickness to tube diameter—where the wall thickness was only 10 nanometers—produced a very different result.

“You deform it, and all of a sudden, it springs back,” Greer says. “In some cases, we were able to deform these samples by as much as 85 percent, and they could still recover.”

Most brittle materials such as ceramics, silicon, and glass shatter because they are filled with flaws—imperfections such as small voids and inclusions. The more perfect the material, the less likely you are to find a weak spot where it will fail. Therefore, the researchers hypothesize, when you reduce these structures down to the point where individual walls are only 10 nanometers thick, both the number of flaws and the size of any flaws are kept to a minimum, making the whole structure much less likely to fail.

“One of the benefits of using nanolattices is that you significantly improve the quality of the material because you’re using such small dimensions,” Greer says. “It’s basically as close to an ideal material as you can get, and you get the added benefit of needing only a very small amount of material in making them.”

The Greer lab is now aggressively pursuing various ways of scaling up the production of these so-called meta-materials.

15 pages of supplemental material

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

Subscribe on Google News