DARPA Humanoid Atlas robotsand other DARPA bots now will have no strings for competition

A total of $3.5 million in prizes will now be awarded to the top three finishers in the DARPA Robotics Challenge (DRC), the final event of which will be held June 5-6, 2015.

The most significant changes to the Altas robot are to the robot’s power supply and pump. Atlas will now carry an onboard 3.7-kilowatt-hour lithium-ion battery pack, with the potential for one hour of “mixed mission” operation that includes walking, standing, use of tools, and other movements. This will drive a new variable-pressure pump that allows for more efficient operation.

“The introduction of a battery and variable-pressure pump into Atlas poses a strategic challenge for teams,” said Pratt. “The operator will be able to run the robot on a mid-pressure setting for most operations to save power, and then apply bursts of maximum pressure when additional force is needed. The teams are going to have to game out the right balance of force and battery life to complete the course.”

The Atlas robot was redesigned with the goal of improving power efficiency to better support battery operation. Approximately 75 percent of the robot was rebuilt; only the lower legs and feet were carried over from the original design. (DARPA image)

Other major upgrades to Atlas focused on increasing efficiency, dexterity, and resilience, and include:

Repositioned shoulders and arms allow for increased workspace in front of the robot and let the robot view its hands in motion, thus providing additional sensor feedback to the operator.
New electrically actuated lower arms will increase strength and dexterity and improve force sensing.
The addition of an extra degree of freedom in the wrist means the robot will be able to turn a door handle simply by rotating its wrist as opposed to moving its entire arm.
Three onboard perception computers are used for perception and task planning, and a wireless router in the head enables untethered communication.
Re-sized actuators in the hip, knee, and back give the robot greater strength.
A wireless emergency stop allows for safe operation.
As a result of the new pump, Atlas is much, much quieter than before!
The seven DRC teams using Atlas are scheduled to receive their upgraded robots by the end of January. The robots will be delivered with a “battery emulator,” a training tool temporarily mounted in the robot that simulates how the real battery will perform. This will allow them to switch modes between constant voltage for routine practice and metered voltage to simulate actual battery life.

Given their identical hardware, the Atlas teams will have to differentiate themselves through software, control interfaces, and competition strategy. Teams will have a few options on the selection of tasks they choose to attempt and the order they do them—and must manage time and battery life during their runs—but DARPA expects that the top-placing teams will complete all of the tasks.

Teams are likely to keep their robots connected to fall arrestors during much of the remaining months of training as a safeguard against premature damage to the robot. DARPA demonstrated the new Atlas with a fall arrestor in place.

“Risk mitigation is part of the game,” Pratt said. “It’s up to the teams to decide what chances they’re willing to take during training and risk falls and damage, but come the DRC Finals, the cords are cut.”

The competing teams have been operating under extreme pressure since the 2013 DRC Trials, working to upgrade their robots and software for the more demanding DRC Finals. In June 2014, DARPA announced a series of additional hurdles that teams will face in the Finals:

Robots will have to operate completely without wires—they may not be connected to power cords, fall arrestors, or wired communications tethers. Teams will have to communicate with their robots over a secure wireless network.

Teams are not allowed any physical intervention with their robot after it begins a run. If a robot falls or gets stuck, it will have to recover and continue with the tasks without any hands-on assistance. If a robot cannot sustain and recover from a fall, its run will end.

DARPA will intentionally degrade communications between the robots and human operators working at a distance. The idea is to replicate the conditions these robots would face going into a disaster zone. Spotty communication will force the robots to make some progress on their own during communications blackouts.

Avengers 2 trailer with no strings for Ultron

SOURCES – DARPA, Youtube

Subscribe on Google News