Can the Emdrive Be Explained by Quantised Inertia?

An Introduction to MiHsC – a model for inertia called: Modified inertia by a Hubble-scale Casimir effect (MiHsC) or quantised inertia.

The idea of inertia is that in a vacuum, where there is no friction, objects move along in a straight line at constant speed until you push on them. This tendency was first isolated by Galileo, who rolled balls down inclined planes (balls feel less friction). This tendency, inertia, has always been assumed but never explained.

Meanwhile physics has moved towards a study of information, and it has been realised in the past few decades that when you accelerate something, say, to the right, information from far to the left can never catch up to it, this means there is an information-boundary or ‘horizon’ to its left which is like a black hole event horizon (it is called a Rindler horizon). A kind of Hawking radiation comes off this horizon, which is called Unruh radiation (it was proposed by Bill Unruh) and is seen as background radiation, but is seen only by the accelerated object.

The new prediction from the model then is that objects with very low acceleration lose inertial mass in a new wa

It has been shown that cone-shaped cavities with microwaves resonating within them move slightly towards their narrow ends (the emdrive). There is no accepted explanation for this. Here it is shown that this effect can be predicted by assuming that the inertial mass of the photons in the cavity is caused by Unruh radiation whose wavelengths must fit exactly within the cavity, using a theory already applied with some success to astrophysical anomalies where the cavity is the Hubble volume. For the emdrive this means that more Unruh waves are “allowed” at the wide end, leading to a greater inertial mass for the photons there. The gain of inertia of the photons when they move from the narrow to the wide end, and the conservation of momentum, predicts that the cavity must then move towards the narrow end, as observed. This model predicts the available observations quite well, although the observational uncertainties are not well known.

(H / T Adam Crowl at Crowlspace )

Three independent experiments have shown that when microwaves resonate within an asymmetric cavity an anomalous force is generated pushing the cavity towards its narrow end.

This force can be predicted to some extent using a new model for inertia that has been applied quite successfully to predict galaxy rotation and cosmic acceleration, and which assumes in this case that the inertial mass of photons is caused by Unruh radiation and these have to fit exactly between the cavity walls so that the inertial mass is greater at the wide end of the cavity. To conserve momentum the cavity is predicted to move towards its narrow end, as seen.

This model predicts the published EmDrive results fairly well with a very simple formula and suggests that the thrust can be increased by increasing the input power, Q factor, or by increasing the degree of taper in the cavity or using a dielectric.

There is information from Paul March on the testing of the controversial EMDrive at NASA Eagleworks. Paul commented on the NASA spaceflight forum.

Experimental Thrust is at 50 micronewtons but need at least 100 micronewtons to go to Glenn Research Center (GRC) for a replication effort in the next few months

The NASA Eagleworks Lab is still working on the copper frustum thruster that was reported on last summer at the AIAA/JPC. They have now confirmed that there is a thrust signature in a hard vacuum (~5.0×10^-6 Torr) in both the forward direction, (approx. +50 micro-Newton (uN) with 50W at 1,937.115 MHz), and the reversed direction, (up to -16uN with a failing RF amp), when the thruster is rotated 180 degrees on the torque pendulum. However they continue to fight through RF amplifier failures brought on by having to operate them in a hard vacuum with few $$$ resources to fix them when they break, so the desired data is coming along very slowly. They are still working on obtaining enough data though that will allow us to go to Glenn Research Center (GRC) for a replication effort in the next few months. However that will only happen if they can make the thrust signature large enough since the GRC thrust stand can only measure down to ~50uN, so we have to get the thrust signature up to at least 100uN before they can go to GRC.

Seven months ago there was the big splash from the EMdrive and Cannae drive results.

The 21 page Anomalous Thrust Production from an RF Test Device Measured on a Low-Thrust Torsion Pendulum paper is online at Libertarian News.

Abstract – Anomalous Thrust Production from an RF Test Device Measured on a Low-Thrust Torsion Pendulum

This paper describes the test campaigns designed to investigate and demonstrate viability of using classical magnetoplasmadynamics to obtain a propulsive momentum transfer via the quantum vacuum virtual plasma. This paper will not address the physics of the quantum vacuum plasma thruster (QVPT), but instead will describe the recent test campaign. In addition, it contains a brief description of the supporting radio frequency (RF) field analysis, ssons learned, and potential applications of the technology to space exploration missions. During the first (Cannae) portion of the campaign, approximately 40 micronewtons of thrust were observed in an RF resonant cavity test article excited at approximately 935 megahertz and 28 watts. During the subsequent (tapered cavity) portion of the campaign, approximately 91 micronewtons of thrust were observed in an RF resonant cavity test article excited at approximately 1933 megahertz and 17 watts. Testing was performed on a low-thrust torsion pendulum that is capable of detecting force at a single-digit micronewton level. Test campaign results indicate that the RF resonant cavity thruster design, which is unique as an electric propulsion device, is producing a force that is not attributable to any classical electromagnetic phenomenon and therefore is potentially demonstrating an interaction with the quantum vacuum virtual plasma.

From the Full paper

Talk Polywell had an interesting comment on the full paper

Eagleworks tested one tapered (frustum) cavity, aka Shawyer’s EmDrive; and two Cannae drives which are also asymmetric but different resonant cavities. The Cannae drive is said to work on a purported different principle than the EmDrive, according to its inventor Guido Fetta (a net Lorentz force imbalance of electrons upon top vs bottom wall of the cavity). According to this purported working principle, one Cannae drive had radial slots on its rim as required by Fetta in order to produce net thrust, and the second Cannae drive didn’t have those slits and was intended to be a “null test device”. But the Cannae null test article… also produced net thrust (20 to 40 µN of net thrust depending of the forward or backward direction).

The null device having thrust means that the Cannae drive theory that the slits mattered was not true. However, this is irrelevant as to whether the Cannae drive produces thrust. Another theoretical explanation is needed but the anomalous thrust remains

We’re talking of net thrust because of course the setup was also tested with a null 50 ohm load connected, in order to cancel the effect from the drives and detect any detect any spurious force due to EM coupling with the whole apparatus (which exists, at 9.6 µN) and this “null” spurious force was evidently subtracted from any thrust signal due to the drives then tested on the pendulum.

All tests articles (the EmDrive version, the Cannae drive version, and even the Cannae “null test” version) had a dielectric embedded within. This is a hint for a different theoretical explanation involving EM fields, proper acceleration, mass fluctuation and dielectrics. Maybe Mach effects (due to Mach’s principle), as supposed by Woodward and Fearn within the GR theory, or within a scalar-tensor theory of gravity according to Minotti.

What space missions are possible with early versions if this is true?

Based on test data and theoretical model development, the expected thrust to power for initial flight applications is expected to be in the 0.4 newton per kilowatt electric (N/kWe) range, which is about seven times higher than the current state of the art Hall thruster in use on orbit today. The following figures show the value proposition for this class of electric propulsion. A conservative 300 kilowatt solar electric propulsion roundtrip human exploration class mission to Mars/Deimos. A 90 metric ton 2 megawatt (MW) nuclear electric propulsion mission to Mars that has considerable reduction in transit times due to having a thrust to mass ratio greater than the gravitational acceleration of the Sun (0.6 milli-g’s at 1 AU). The same spacecraft mass performing a roundtrip mission to the Saturn system spending over a year around two moons of interest, Titan and Enceladus. Even in this last class of mission which requires only a single heavy lift launch vehicle, the mission has less mission duration than is common with a current conjunction-class Mars mission using chemical propulsion systems and which would require multiple heavy lift launch vehicles. 300 kW SEP Roundtrip Mission to Mars Deimos (50 day stay) departing from DRO 300 kW SEP

SOURCES – Physics from the Edge, Progress in Physics

Subscribe on Google News