Elon Musk Battery Singularity – 1000 Gigabattery factories for Grid Storage and car domination

JB Strauble is the CTO of Tesla Motors. In a video of an Energy Summit Keynote, he talks about the energy density of batteries doubling every ten years and how this will not only enable electric cars to beat combustion engine cars but also to transform energy storage on the grid.

If 100 million homes in the USA had 4 kilowatts of nameplate solar capacity (1kw net power) and needed to store that power for 8 hours (10AM to 4PM power to 6pm-midnight and 6AM-8AM) that would be 800 GWh. This would be the capacity of 16 Gigabattery factories. This would be less than 10% of the grid energy storage needs of the United States. The US uses 4500 TWh of electrical power (and 10 times that amount when currently non-electric transportation and industrial power usage is counted.)

100 Gigabattery factories would be needed to produce the batteries for 50 million cars each year. Complete domination of energy grid storage could see a demand for 900 more Gigabattery factories.

$100-150 per kwh would displace combustion engine cars and also signal Energy Grid Storage Transformation

A summary paper in Nature, presents an original systematic review, analysing over 80 different estimates reported 2007–2014 to systematically trace the costs of Li-ion battery packs for BEV manufacturers. We show that industry-wide cost estimates declined by approximately 14% annually between 2007 and 2014, from above US$1,000 per kWh to around US$410 per kWh, and that the cost of battery packs used by market-leading BEV manufacturers are even lower, at US$300 per kWh, and has declined by 8% annually. Learning rate, the cost reduction following a cumulative doubling of production, is found to be between 6 and 9%, in line with earlier studies on vehicle battery technology. We reveal that the costs of Li-ion battery packs continue to decline and that the costs among market leaders are much lower than previously reported. This has significant implications for the assumptions used when modelling future energy and transport systems and permits an optimistic outlook for BEVs contributing to low-carbon transport.

The International Energy Association has a roadmap for energy storage to 2050

The University of Illinois recently reported progress with Magnesium ion batteries which could double the energy storage of batteries.

SOURCES – Youtube, wikipedia

About The Author

Add comment

E-mail is already registered on the site. Please use the Login form or enter another.

You entered an incorrect username or password

Sorry, you must be logged in to post a comment.

Elon Musk Battery Singularity – 1000 Gigabattery factories for Grid Storage and car domination

JB Strauble is the CTO of Tesla Motors. In a video of an Energy Summit Keynote, he talks about the energy density of batteries doubling every ten years and how this will not only enable electric cars to beat combustion engine cars but also to transform energy storage on the grid.

If 100 million homes in the USA had 4 kilowatts of nameplate solar capacity (1kw net power) and needed to store that power for 8 hours (10AM to 4PM power to 6pm-midnight and 6AM-8AM) that would be 800 GWh. This would be the capacity of 16 Gigabattery factories. This would be less than 10% of the grid energy storage needs of the United States. The US uses 4500 TWh of electrical power (and 10 times that amount when currently non-electric transportation and industrial power usage is counted.)

100 Gigabattery factories would be needed to produce the batteries for 50 million cars each year. Complete domination of energy grid storage could see a demand for 900 more Gigabattery factories.

$100-150 per kwh would displace combustion engine cars and also signal Energy Grid Storage Transformation

A summary paper in Nature, presents an original systematic review, analysing over 80 different estimates reported 2007–2014 to systematically trace the costs of Li-ion battery packs for BEV manufacturers. We show that industry-wide cost estimates declined by approximately 14% annually between 2007 and 2014, from above US$1,000 per kWh to around US$410 per kWh, and that the cost of battery packs used by market-leading BEV manufacturers are even lower, at US$300 per kWh, and has declined by 8% annually. Learning rate, the cost reduction following a cumulative doubling of production, is found to be between 6 and 9%, in line with earlier studies on vehicle battery technology. We reveal that the costs of Li-ion battery packs continue to decline and that the costs among market leaders are much lower than previously reported. This has significant implications for the assumptions used when modelling future energy and transport systems and permits an optimistic outlook for BEVs contributing to low-carbon transport.

The International Energy Association has a roadmap for energy storage to 2050

The University of Illinois recently reported progress with Magnesium ion batteries which could double the energy storage of batteries.

SOURCES – Youtube, wikipedia

About The Author