No Strings on the running and hurdling Cheetahbot

MIT researchers who built a robotic cheetah have now trained it to see and jump over hurdles as it runs — making this the first four-legged robot to run and jump over obstacles autonomously and untethered.

The robot can “see,” with the use of onboard LIDAR — a visual system that uses reflections from a laser to map terrain. The team developed a three-part algorithm to plan out the robot’s path, based on LIDAR data. Both the vision and path-planning system are onboard the robot, giving it complete autonomous control.

The algorithm’s first component enables the robot to detect an obstacle and estimate its size and distance. The researchers devised a formula to simplify a visual scene, representing the ground as a straight line, and any obstacles as deviations from that line. With this formula, the robot can estimate an obstacle’s height and distance from itself.

Once the robot has detected an obstacle, the second component of the algorithm kicks in, allowing the robot to adjust its approach while nearing the obstacle. Based on the obstacle’s distance, the algorithm predicts the best position from which to jump in order to safely clear it, then backtracks from there to space out the robot’s remaining strides, speeding up or slowing down in order to reach the optimal jumping-off point.

This “approach adjustment algorithm” runs on the fly, optimizing the robot’s stride with every step. The optimization process takes about 100 milliseconds to complete — about half the time of a single stride.

When the robot reaches the jumping-off point, the third component of the algorithm takes over to determine its jumping trajectory. Based on an obstacle’s height, and the robot’s speed, the researchers came up with a formula to determine the amount of force the robot’s electric motors should exert to safely launch the robot over the obstacle. The formula essentially cranks up the force applied in the robot’s normal bounding gait, which Kim notes is essentially “sequential executions of small jumps.”

In experiments on a treadmill and an indoor track, the cheetah robot successfully cleared obstacles up to 18 inches tall — more than half of the robot’s own height — while maintaining an average running speed of 5 miles per hour

The team tested the MIT cheetah’s jumping ability first on a treadmill, then on a track. On the treadmill, the robot ran tethered in place, as researchers placed obstacles of varying heights on the belt. As the treadmill itself was only about 4 meters long, the robot, running in the middle, only had 1 meter in which to detect the obstacle and plan out its jump. After multiple runs, the robot successfully cleared about 70 percent of the hurdles.

In comparison, tests on an indoor track proved much easier, as the robot had more space and time in which to see, approach, and clear obstacles. In these runs, the robot successfully cleared about 90 percent of obstacles.

Kim is now working on getting the MIT cheetah to jump over hurdles while running on softer terrain, like a grassy field.

Other untethered robots like Boston Dynamics Spot

SOURCES – MIT, Youtube