Light-harvesting nanoparticles captures energy from ‘hot electrons’ to split molecules of water into oxygen and hydrogen

Rice University researchers have demonstrated an efficient new way to capture the energy from sunlight and convert it into clean, renewable energy by splitting water molecules.

The technology, which is described online in the American Chemical Society journal Nano Letters, relies on a configuration of light-activated gold nanoparticles that harvest sunlight and transfer solar energy to highly excited electrons, which scientists sometimes refer to as “hot electrons.”

“Hot electrons have the potential to drive very useful chemical reactions, but they decay very rapidly, and people have struggled to harness their energy,” said lead researcher Isabell Thomann, assistant professor of electrical and computer engineering and of chemistry and materials science and nanoengineering at Rice. “For example, most of the energy losses in today’s best photovoltaic solar panels are the result of hot electrons that cool within a few trillionths of a second and release their energy as wasted heat.”

Capturing these high-energy electrons before they cool could allow solar-energy providers to significantly increase their solar-to-electric power-conversion efficiencies and meet a national goal of reducing the cost of solar electricity.

In the light-activated nanoparticles studied by Thomann and colleagues at Rice’s Laboratory for Nanophotonics (LANP), light is captured and converted into plasmons, waves of electrons that flow like a fluid across the metal surface of the nanoparticles. Plasmons are high-energy states that are short-lived, but researchers at Rice and elsewhere have found ways to capture plasmonic energy and convert it into useful heat or light. Plasmonic nanoparticles also offer one of the most promising means of harnessing the power of hot electrons, and LANP researchers have made progress toward that goal in several recent studies.

The system uses the energy from hot electrons to split molecules of water into oxygen and hydrogen. That’s important because oxygen and hydrogen are the feedstocks for fuel cells, electrochemical devices that produce electricity cleanly and efficiently.

Nanoletters – Direct Plasmon-Driven Photoelectrocatalysis

Harnessing the energy from hot charge carriers is an emerging research area with the potential to improve energy conversion technologies. Here we present a novel plasmonic photoelectrode architecture carefully designed to drive photocatalytic reactions by efficient, nonradiative plasmon decay into hot carriers. In contrast to past work, our architecture does not utilize a Schottky junction, the commonly used building block to collect hot carriers. Instead, we observed large photocurrents from a Schottky-free junction due to direct hot electron injection from plasmonic gold nanoparticles into the reactant species upon plasmon decay.

The key ingredients of our approach are
(i) an architecture for increased light absorption inspired by optical impedance matching concepts,
(ii) carrier separation by a selective transport layer, and
(iii) efficient hot-carrier generation and injection from small plasmonic Au nanoparticles to adsorbed water molecules.

We also investigated the quantum efficiency of hot electron injection for different particle diameters to elucidate potential quantum effects while keeping the plasmon resonance frequency unchanged. Interestingly, our studies did not reveal differences in the hot-electron generation and injection efficiencies for the investigated particle dimensions and plasmon resonances.

The setup features three layers of materials. The bottom layer is a thin sheet of shiny aluminum. This layer is covered with a thin coating of transparent nickel-oxide, and scattered atop this is a collection of plasmonic gold nanoparticles — puck-shaped disks about 10 to 30 nanometers in diameter.

When sunlight hits the discs, either directly or as a reflection from the aluminum, the discs convert the light energy into hot electrons. The aluminum attracts the resulting electron holes and the nickel oxide allows these to pass while also acting as an impervious barrier to the hot electrons, which stay on gold. By laying the sheet of material flat and covering it with water, the researchers allowed the gold nanoparticles to act as catalysts for water splitting. In the current round of experiments, the researchers measured the photocurrent available for water splitting rather than directly measuring the evolved hydrogen and oxygen gases produced by splitting, but Thomann said the results warrant further study.

“Utilizing hot electron solar water-splitting technologies we measured photocurrent efficiencies that were on par with considerably more complicated structures that also use more expensive components,” Thomann said. “We are confident that we can optimize our system to significantly improve upon the results we have already seen.”

16 pages of supporting information

SOURCES – Nanoletters, Rice University

About The Author

Add comment

E-mail is already registered on the site. Please use the Login form or enter another.

You entered an incorrect username or password

Sorry, you must be logged in to post a comment.