DARPA seeking novel mathematical frameworks for understanding and representing complexity

Complex interconnected systems are increasingly becoming part of everyday life in both military and civilian environments. In the military domain, air-dominance system-of-systems concepts, such as those being developed under DARPA’s SoSITE effort, envision manned and unmanned aircraft linked by networks that seamlessly share data and resources in real time. In civilian settings such as urban “smart cities”, critical infrastructure systems—water, power, transportation, communications and cyber—are similarly integrated within complex networks. Dynamic systems such as these promise capabilities that are greater than the mere sum of their parts, as well as enhanced resilience when challenged by adversaries or natural disasters. But they are difficult to model and cannot be systematically designed using today’s tools, which are simply not up to the task of assessing and predicting the complex interactions among system structures and behaviors that constantly change across time and space.

To overcome this challenge, DARPA has announced the Complex Adaptive System Composition and Design Environment (CASCADE) program. The goal of CASCADE is to advance and exploit novel mathematical techniques able to provide a deeper understanding of system component interactions and a unified view of system behaviors.

“CASCADE aims to fundamentally change how we design systems for real-time resilient response within dynamic, unexpected environments,” said John Paschkewitz, DARPA program manager. “Existing modeling and design tools invoke static ‘playbook’ concepts that don’t adequately represent the complexity of, say, an airborne system of systems with its constantly changing variables, such as enemy jamming, bad weather, or loss of one or more aircraft. As another example, this program could inform the design of future forward-deployed military surgical capabilities by making sure the functions, structures, behaviors and constraints of the medical system—such as surgeons, helicopters, communication networks, transportation, time, and blood supply—are accurately modeled and understood.”

CASCADE could also help the Department of Defense fulfill its role of providing humanitarian assistance in response to a devastating earthquake, hurricane or other catastrophe, by developing comprehensive response models that account for the many components and interactions inherent in such missions, whether in urban or austere environs.

“We need new design and representation tools to ensure resilience of buildings, electricity, drinking water supply, healthcare, roads and sanitation when disaster strikes,” Paschkewitz said. “CASCADE could help develop models that would provide civil authorities, first responders and assisting military commanders with the sequence and timing of critical actions they need to take for saving lives and restoring critical infrastructure. In the stress following a major disaster, models that could do that would be invaluable.”

The CASCADE program seeks expertise in the following areas:

  • Applied mathematics, especially in category theory, algebraic geometry and topology, and sheaf theory
  • Operations research, control theory and planning, especially in stochastic and non-linear control
  • Modeling and applications responsive to challenges in battlefield medicine logistics and platforms, adaptive logistics, reliability, and maintenance
  • Search and rescue platforms and modeling
  • Adaptive and resilient urban infrastructure

About The Author

Add comment

E-mail is already registered on the site. Please use the Login form or enter another.

You entered an incorrect username or password

Sorry, you must be logged in to post a comment.