Electronic nematicity as a universal feature in cuprate high-temperature superconductors

Physicists at the University of Waterloo have led an international team that has come closer to understanding the mystery of how superconductivity, an exotic state that allows electricity to be conducted with practically zero resistance, occurs in certain materials.

The findings show evidence of electronic nematicity as a universal feature in cuprate high-temperature superconductors. Cuprates are copper-oxide ceramics composed of two-dimensional layers or planes of copper and oxygen atoms separated by other atoms.

Physicists all over the world are on a quest to understand the secrets of superconductivity because of the exciting technological possibilities that could be realized if they could make it happen at closer to room temperatures. In conventional superconductivity, materials that are cooled to nearly absolute zero ( −273.15 Celsius) exhibit the fantastic property of electrons pairing up and being able to conduct electricity with practically zero resistance. If superconductivity worked at higher temperatures, it could have implications for creating technologies such as ultra-efficient power grids, supercomputers and magnetically levitating vehicles.

Science – Nematicity in stripe-ordered cuprates probed via resonant x-ray scattering

Scientists use soft x-ray scattering in superconductivity research

The scientists used a novel technique called soft x-ray scattering at the Canadian Light Source synchrotron in Saskatoon to probe electron scattering in specific layers in the cuprate crystalline structure. Specifically, they looked at the individual cuprate (CuO2) planes where electronic nematicity takes place, versus the crystalline distortions in between the CuO2 planes.

Electronic nematicity happens when the electron orbitals align themselves like a series of rods. The term nematicity commonly refers to when liquid crystals spontaneously align under an electric field in liquid crystal displays. In this case, the electron orbitals enter the nematic state as the temperature drops below a critical point.

Future work will tackle how electrons can be tuned for superconductivity

Although there is not yet an agreed upon explanation for why electronic nematicity occurs, it may ultimately present another knob to tune in the quest to achieve the ultimate goal of a room temperature superconductor.

“Future work will tackle how electronic nematicity can be tuned, possibly to advantage, by modifying the crystalline structure,” says Hawthorn.

Disentangling intertwined orders

In copper oxide superconductors, several types of order compete for supremacy. In addition to superconductivity, researchers have found periodic patterns in charge density (CDW order), as well as an asymmetry in the electronic density within the unit cell of some cuprates (nematicity). CDW order has been detected in the underdoped regime of all major cuprate families, but the ubiquity of nematicity is less clear. Achkar et al. used resonant x-ray scattering to find that, in the copper oxide planes of three lanthanum-based cuprates, nematicity has a temperature dependence distinct from that of a related structural distortion. This implies that there are additional, electronic mechanisms for nematicity


In underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry-breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders is under debate. Here, we employ resonant x-ray scattering in stripe-ordered superconductors (La,M)2CuO4 to probe the relationship between electronic nematicity of the Cu 3d orbitals, structure of the (La,M)2O2 layers, and CDW order. We find distinct temperature dependences for the structure of the (La,M)2O2 layers and the electronic nematicity of the CuO2 planes, with only the latter being enhanced by the onset of CDW order. These results identify electronic nematicity as an order parameter that is distinct from a purely structural order parameter in underdoped striped cuprates.

SOURCES – University of Waterloo, Journal Science