Rigetti Computing is a quantum computer startup that emerged from IBM Research

Rigetti Computing uses liquid helium to cool experimental quantum computer chips to a fraction of a degree from absolute zero. The two-year-old company is trying to build the hardware needed to power a quantum computer, which could trounce any conventional machine by tapping into quantum mechanics.

The company aims to produce a prototype chip by the end of 2017 that is significantly more complex than those built by other groups working on fully programmable quantum computers. The following generation of chips should be able to accelerate some kinds of machine learning and run highly accurate chemistry simulations that might unlock new kinds of industrial processes, says Chad Rigetti, the startup’s founder and CEO.

Rigetti aims to ultimately set up a kind of quantum-powered cloud computing service, where customers pay to run problems on the company’s superconducting chips. It is also working on software to make it easy for other companies to write code for its quantum hardware.

That plan requires Rigetti to make leaps of science and engineering that have so far eluded government, academic, and corporate labs. Although physicists have sketched out the basics of how quantum computers could be designed and what benefits they might bring, building them is proving tricky

A quantum computing chip made by Rigetti Computing with three quantum bits, which represent digital bits using quantum states.

Rigetti Computing is developing a fault-tolerant gate-based solid state quantum processor. Their technology is claimed to be highly scalable and low cost, capable of reaching the large memory sizes needed to run real-world quantum algorithms.

Chad Rigetti was technical Lead for 3-D quantum computing at IBM Research. He has been building prototype quantum processors for 12+ years. At Yale, he developed the first all-microwave control methods for superconducting qubits, and at IBM built qubits with world-record performance.

The startup is currently testing a three-qubit chip made using aluminum circuits on a silicon wafer, and the design due next year should have 40 qubits. Rigetti says that’s possible thanks to design software his company has created that reduces the number of prototypes that will need to be built on the way to a final design. Versions with 100 or more qubits would be able to improve on ordinary computers when it comes to chemistry simulations and machine learning, he says.

Others working on quantum computing share the belief that qubit technology has finally reached a point where the devices can be combined in much larger numbers. The leader of Google’s quantum computing lab, which like Rigetti uses superconducting qubits, has predicted that he can build chips with about 100 reliable qubits in a couple of years.

“This is a very exciting time,” says Daniel Lidar, director of the Center for Quantum Information Science and Technology at the University of Southern California. “This is not incremental; we’re really starting to see various groups working with superconducting qubits taking big strides forward.”

Rigetti’s company has so far raised $5 million in funding and employs about 15 people.