IBM Neuromorphic chip hits DARPA milestone and has been used to implement deep learning

IBM delivered on the DARPA SyNAPSE project with a one million neuron brain-inspired processor. The chip consumes merely 70 milliwatts, and is capable of 46 billion synaptic operations per second, per watt–literally a synaptic supercomputer in your palm.

Along the way—progressing through Phase 0, Phase 1, Phase 2, and Phase 3—we have journeyed from neuroscience to supercomputing, to a new computer architecture, to a new programming language, to algorithms, applications, and now to a new chip—TrueNorth.

Fabricated in Samsung’s 28nm process, with 5.4 billion transistors, TrueNorth is IBM’s largest chip to date in transistor count. While simulating complex recurrent neural networks, TrueNorth consumes less than 100mW of power and has a power density of 20mW / cm2

PNAS – Convolutional networks for fast, energy-efficient neuromorphic computing

Abstract – Convolutional networks for fast, energy-efficient neuromorphic computing

Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that
(i) approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech,
(ii) perform inference while preserving the hardware’s underlying energy-efficiency and high throughput, running on the aforementioned datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively over 6,000 frames/s per Watt), and
(iii) can be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. This approach allows the algorithmic power of deep learning to be merged with the efficiency of neuromorphic processors, bringing the promise of embedded, intelligent, brain-inspired computing one step closer.

A) Two layers of a convolutional network. Colors (green, purple, blue, orange) designate neurons (individual boxes) belonging to the same group (partitioning the feature dimension) at the same location (partitioning the spatial dimensions). (B) A TrueNorth chip (shown far right socketed in IBM’s NS1e board) comprises 4,096 cores, each with 256 inputs, 256 neurons, and a 256 ×× 256 synaptic array. Convolutional network neurons for one group at one topographic location are implemented using neurons on the same TrueNorth core (TrueNorth neuron colors correspond to convolutional network neuron colors in A), with their corresponding filter support region implemented using the core’s inputs, and filter weights implemented using the core’s synaptic array.