Physicists Induce Superconductivity in Non-Superconducting Materials and improve efficiency in Known Superconducting Materials

Researchers at the University of Houston have reported a new method for inducing superconductivity in non-superconducting materials, demonstrating a concept proposed decades ago but never proven.

The technique can also be used to boost the efficiency of known superconducting materials, suggesting a new way to advance the commercial viability of superconductors, said Paul C.W. Chu, chief scientist at the Texas Center for Superconductivity at UH (TcSUH) and corresponding author of a paper describing the work, published Oct. 31 in the Proceedings of the National Academy of Sciences.

“Superconductivity is used in many things, of which MRI (magnetic resonance imaging) is perhaps the best known,” said Chu, the physicist who holds the TLL Temple Chair of Science at UH. But the technology used in health care, utilities and other fields remains expensive, in part because it requires expensive cooling, which has limited widespread adoption, he said.

PNAS – Interface-induced superconductivity at ∼25 K at ambient pressure in undoped CaFe2As2 single crystals

The research, demonstrating a new method to take advantage of assembled interfaces to induce superconductivity in the non-superconducting compound calcium iron arsenide, offers a new approach to finding superconductors that work at higher temperatures.

Superconducting materials conduct electric current without resistance, while traditional transmission materials lose as much as 10 percent of energy between the generating source and the end user. That means superconductors could allow utility companies to provide more electricity without increasing the amount of fuel used to generate electricity.

“One way that has long been proposed to achieve enhanced Tcs (critical temperature, or the temperature at which a material becomes superconducting) is to take advantage of artificially or naturally assembled interfaces,” the researchers wrote. “The present work clearly demonstrates that high Tc superconductivity in the well-known non-superconducting compound CaFe2As2 (calcium iron arsenide) can be induced by antiferromagnetic/metallic layer stacking and provides the most direct evidence to date for the interface-enhanced Tc in this compound.”

Chu’s coauthors on the paper include lead author Kui Zhao, a recent UH graduate now at Advanced MicroFabrication Equipment Inc. in Shanghai; Liangzi Deng, Shu-Yuan Huyan and Yu-Yi Xue, both affiliated with the UH Department of Physics and TcSUH, and Bing Lv, a material physicist who recently moved to the University of Texas-Dallas.

The concept that superconductivity could be induced or enhanced at the point where two different materials come together – the interface – was first proposed in the 1970s but had never been conclusively demonstrated, Chu said. Some previous experiments showing enhanced superconducting critical temperature could not exclude other effects due to stress or chemical doping, which prevented verification, he said.

To validate the concept, researchers working in ambient pressure exposed the undoped calcium iron arsenide compound to heat – 350 degrees Centigrade, considered relatively low temperature for this procedure – in a process known as annealing. The compound formed two distinct phases, with one phase increasingly converted to the other the longer the sample was annealed. Chu said neither of the two phases was superconducting, but researchers were able to detect superconductivity at the point when the two phases coexist.

Although the superconducting critical temperature of the sample produced through the process was still relatively low, Chu said the method used to prove the concept offers a new direction in the search for more efficient, less expensive superconducting materials.


One of the major goals for scientists in the field of superconductivity and materials science has been to obtain superconductors with higher critical temperatures (Tc). One way that has long been proposed to achieve enhanced Tcs is to take advantage of artificially or naturally assembled interfaces. The present work clearly demonstrates that high-Tc superconductivity in the well-known nonsuperconducting compound CaFe2As2 can be induced by antiferromagnetic/metallic layer stacking and provides the most direct evidence to date for the interface-enhanced Tc in this compound. The observations offer an avenue to higher Tc.


Superconductivity has been reversibly induced/suppressed in undoped CaFe2As2 (Ca122) single crystals through proper thermal treatments, with Tc at ∼25 K at ambient pressure and up to 30 K at 1.7 GPa. We found that Ca122 can be stabilized in two distinct tetragonal (T) phases at room temperature and ambient pressure: PI with a nonmagnetic collapsed tetragonal (cT) phase at low temperature and PII with an antiferromagnetic orthorhombic (O) phase at low temperature, depending on the low-temperature annealing condition. Neither phase at ambient pressure is superconducting down to 2 K. However, systematic annealing for different time periods at 350 °C on the as-synthesized crystals, which were obtained by quenching the crystal ingot from 850 °C, reveals the emergence of superconductivity over a narrow time window. Whereas the onset Tc is insensitive to the anneal time, the superconductive volume fraction evolves with the time in a dome-shaped fashion. Detailed X-ray diffraction profile analyses further reveal mesoscopically stacked layers of the PI and the PII phases. The deduced interface density correlates well with the superconducting volume measured. The transport anomalies of the T–cT transition, which is sensitive to lattice strain, and the T–O transition, which is associated with the spin-density-wave (SDW) transition, are gradually suppressed over the superconductive region, presumably due to the interface interactions between the nonmagnetic metallic cT phase and the antiferromagnetic O phase. The results provide the most direct evidence to date for interface-enhanced superconductivity in undoped Ca122, consistent with the recent theoretical prediction

1 page of supporting information

SOURCES- University of Houston, Proceedings of the National Academy of Science