Astronomer searches for signs of life on Wolf 1061 exoplanet

SF State astronomer Stephen Kane is searching for signs of life in one of the extrasolar systems closest to Earth.

As one of the world’s leading “planet hunters,” Kane focuses on finding “habitable zones,” areas where water could exist in a liquid state on a planet’s surface if there’s sufficient atmospheric pressure. Kane and his team, including former undergraduate student Miranda Waters, examined the habitable zone on a planetary system 14 light years away. Their findings will appear in the next issue of Astrophysical Journal in a paper titled “Characterization of the Wolf 1061 Planetary System.”

“The Wolf 1061 system is important because it is so close and that gives other opportunities to do follow-up studies to see if it does indeed have life,” Kane said.

But it’s not just Wolf 1061’s proximity to Earth that made it an attractive subject for Kane and his team. One of the three known planets in the system, a rocky planet called Wolf 1061c, is entirely within the habitable zone. With assistance from collaborators at Tennessee State University and in Geneva, Switzerland, they were able to measure the star around which the planet orbits to gain a clearer picture of whether life could exist there.

When scientists search for planets that could sustain life, they are basically looking for a planet with nearly identical properties to Earth, Kane said. Like Earth, the planet would have to exist in a sweet spot often referred to as the “Goldilocks zone” where conditions are just right for life. Simply put, the planet can’t be too close or too far from its parent star. A planet that’s too close would be too hot. If it’s too far, it may be too cold and any water would freeze, which is what happens on Mars, Kane added.

Conversely, when planets warm, a “runaway greenhouse effect” can occur where heat gets trapped in the atmosphere. Scientists believe this is what happened on Earth’s twin, Venus. Scientists believe Venus once had oceans, but because of its proximity to the sun the planet became so hot that all the water evaporated, according to NASA. Since water vapor is extremely effective in trapping in heat, it made the surface of the planet even hotter. The surface temperature on Venus now reaches a scalding 880 degrees Fahrenheit.

Arxiv – Characterization of the wolf 1061 Planetary System

Since Wolf 1061c is close to the inner edge of the habitable zone, meaning closer to the star, it could be that the planet has an atmosphere that’s more similar to Venus. “It’s close enough to the star where it’s looking suspiciously like a runaway greenhouse,” Kane said.

Kane and his team also observed that unlike Earth, which experiences climatic changes such as an ice age because of slow variations in its orbit around the sun, Wolf 1061c’s orbit changes at a much faster rate, which could mean the climate there could be quite chaotic. “It could cause the frequency of the planet freezing over or heating up to be quite severe,” Kane said.

These findings all beg the question: Is life possible on Wolf 1061c? One possibility is that the short time scales over which Wolf 1061c’s orbit changes could be enough that it could actually cool the planet off, Kane said. But fully understanding what’s happening on the planet’s surface will take more research.

In the coming years, there will be a launch of new telescopes like the James Webb Space Telescope, the successor to the Hubble Space Telescope, Kane said, and it will be able to detect atmospheric components of the exoplanets and show what’s happening on the surface.

Abstract

A critical component of exoplanetary studies is an exhaustive characterization of the host star, from which the planetary properties are frequently derived. Of particular value are the radius, temperature, and luminosity, which are key stellar parameters for studies of transit and habitability science. Here we present the results of new observations of Wolf 1061, known to host three super-Earths. Our observations from the Center for High Angular Resolution Astronomy (CHARA) interferometric array provide a direct stellar radius measurement of 0.3207±0.0088 R⊙, from which we calculate the effective temperature and luminosity using spectral energy distribution models. We obtained seven years of precise, automated photometry that reveals the correct stellar rotation period of 89.3±1.8 days, finds no evidence of photometric transits, and confirms that the radial velocity signals are not due to stellar activity. Finally, our stellar properties are used to calculate the extent of the Habitable Zone for the Wolf 1061 system, for which the optimistic boundaries are 0.09–0.23 AU. Our simulations of the planetary orbital dynamics show that the eccentricity of the Habitable Zone planet oscillates to values as high as ∼0.15 as it exchanges angular momentum with the other planets in the system.