DARPA funding reconfigurable structures and new materials to go beyond Moore’s law

The Department of Defense’s proposed FY 2018 budget includes a $75 million allocation for DARPA in support of a new, public-private “electronics resurgence” initiative. The initiative seeks to undergird a new era of electronics in which advances in performance will be catalyzed not just by continued component miniaturization but also by radically new microsystem materials, designs, and architectures. The new funds will supplement the Agency’s FY 2018 R andD portfolio in electronics, photonics, and related systems to create a coordinated effort valued at more than $200 million, to be further supplemented by significant commercial sector investments.

Among the new fronts to be opened by the defense agency are extending GPU frameworks that underlie machine-learning tools to develop “reconfigurable physical structures that adjust to the needs of the software they support.”

DARPA will focus on the development of new materials for use in electronic devices, new architectures for integrating those devices into complex circuits, and software and hardware design innovations for transforming microsystem designs into reality far more efficiently than ever before, the initiative aims to ensure continued improvements in electronics performance even without the benefit of traditional scaling. Over the coming months, DARPA’s MTO will engage with the microelectronics community through technology discussions, workshops, and other channels to forge a collaborative, cost-shared research agenda to usher microsystems into an exciting new age of innovation. The new research effort will complement DARPA’s recently created Joint University Microelectronics Program (JUMP), the largest University research effort in basic electronics, co-funded by DARPA and Semiconductor Research Corporation, an industry consortium.

The materials portion of the initiative will explore the use of unconventional circuit ingredients to substantially increase circuit performance without requiring smaller transistors. Although silicon is the most familiar microsystem material and compound semiconductors such as silicon germanium already play niche roles, these materials offer limited flexibility in function and reside in a single planar layer. The initiative will show that the Periodic Table provides a vast reservoir of candidate materials for next-generation logic and memory components. Research will unfold with an eye on integrating different semiconductor materials on individual chips, “sticky logic” devices that combine processing and memory functions, and vertical rather than only planar integration of microsystem components.

The architecture portion of the initiative will examine circuit structures that are optimized to the specific tasks they perform. Graphics processing units, which underlie much of the ongoing progress in machine learning, have already demonstrated the performance improvement derived from specialized hardware architectures. The initiative will explore other opportunities, such as reconfigurable physical structures that adjust to the needs of the software they support.

The design portion of the initiative will focus on developing tools for rapidly designing and realizing specialized circuits. Unlike general-purpose circuitry, specialized electronics can be much faster and more energy efficient. Although DARPA has consistently invested in these application-specific integrated circuits (ASICs) for military use, ASICs can be costly and time-consuming to develop. New design tools and an open-source design paradigm could be transformative, enabling innovators to rapidly and cheaply create specialized circuits for a range of commercial applications.

logo

Don’t miss the latest future news

Subscribe and get a FREE Ebook