Discovery of boron on Mars adds to evidence for habitability

The discovery of boron on Mars gives scientists more clues about whether life could have ever existed on Mars.

“Because borates may play an important role in making RNA—one of the building blocks of life—finding boron on Mars further opens the possibility that life could have once arisen on the planet,” said Patrick Gasda, a postdoctoral researcher at Los Alamos National Laboratory and lead author on the paper. “Borates are one possible bridge from simple organic molecules to RNA. Without RNA, you have no life. The presence of boron tells us that, if organics were present on Mars, these chemical reactions could have occurred.”

RNA (ribonucleic acid) is a nucleic acid present in all modern life, but scientists have long hypothesized an “RNA World,” where the first proto-life was made of individual RNA strands that both contained genetic information and could copy itself. A key ingredient of RNA is a sugar called ribose. But sugars are notoriously unstable; they decompose quickly in water. The ribose would need another element there to stabilize it. That’s where boron comes in. When boron is dissolved in water—becoming borate—it will react with the ribose and stabilize it for long enough to make RNA. “We detected borates in a crater on Mars that’s 3.8 billion years old, younger than the likely formation of life on Earth,” said Gasda. “Essentially, this tells us that the conditions from which life could have potentially grown may have existed on ancient Mars, independent from Earth.”

* The presence of boron on Mars opens up new possibilities for habitability because of the important role borate may have played in prebiotic chemistry on early Earth
* The timing of the initial concentration of borates in sediments provides key bounds for when life could have formed on Mars
* The discovery of boron on Mars makes the search for borates a high priority for Curiosity and future missions to Mars.

Geophysical Research Letters – In situ detection of boron by ChemCam on Mars

The boron found on Mars was discovered in calcium sulfate mineral veins, meaning the boron was present in Mars groundwater, and provides another indication that some of the groundwater in Gale Cater was habitable, ranging between 0-60 degrees Celsius (32-140 degrees Fahrenheit) and with neutral-to-alkaline pH.

The boron was identified by the rover’s laser-shooting ChemCam (Chemistry and Camera) instrument, which was developed at Los Alamos National Laboratory in conjunction with the French space agency. Los Alamos’ work on discovery-driven instruments like ChemCam stems from the Laboratory’s experience building and operating more than 500 spacecraft instruments for national defense.

The discovery of boron is only one of several recent findings related to the composition of Martian rocks. Curiosity is climbing a layered Martian mountain and finding chemical evidence of how ancient lakes and wet underground environments changed, billions of years ago, in ways that affected their potential favorability for microbial life.

Abstract

We report the first in situ detection of boron on Mars. Boron has been detected in Gale crater at levels less than 0.05 wt % B by the NASA Curiosity rover ChemCam instrument in calcium-sulfate-filled fractures, which formed in a late-stage groundwater circulating mainly in phyllosilicate-rich bedrock interpreted as lacustrine in origin. We consider two main groundwater-driven hypotheses to explain the presence of boron in the veins: leaching of borates out of bedrock or the redistribution of borate by dissolution of borate-bearing evaporite deposits. Our results suggest that an evaporation mechanism is most likely, implying that Gale groundwaters were mildly alkaline. On Earth, boron may be a necessary component for the origin of life; on Mars, its presence suggests that subsurface groundwater conditions could have supported prebiotic chemical reactions if organics were also present and provides additional support for the past habitability of Gale crater.

As the rover has progressed uphill, compositions trend toward more clay and more boron. These and other chemical variations can tell us about conditions under which sediments were initially deposited and about how later groundwater moving through the accumulated layers altered and transported dissolved elements, including boro

About The Author

Tags: ,