Fusion of quark doubly heavy baryons would generate eight times more power than regular fusion

In nuclear fusion, energy is produced by the rearrangement of protons and neutrons. There is theoretical work that indicates that quark fusion would generate eight times more power than hydrogen fusion.

Nature – Quark-level analogue of nuclear fusion with doubly heavy baryons

The essence of nuclear fusion is that energy can be released by the rearrangement of nucleons between the initial- and final-state nuclei. The recent discovery1 of the first doubly charmed baryon which contains two charm quarks (c) and one up quark (u) and has a mass of about 3,621 megaelectronvolts (MeV) (the mass of the proton is 938 MeV) also revealed a large binding energy of about 130 MeV between the two charm quarks. Here we report that this strong binding enables a quark-rearrangement, exothermic reaction in which two heavy baryons (Λc) undergo fusion to produce the doubly charmed baryon and a neutron, resulting in an energy release of 12 MeV. This reaction is a quark-level analogue of the deuterium–tritium nuclear fusion reaction (DT → 4He n). The much larger binding energy (approximately 280 MeV) between two bottom quarks (b) causes the analogous reaction with bottom quarks to have a much larger energy release of about 138 MeV. Researchers suggest some experimental setups in which the highly exothermic nature of the fusion of two heavy-quark baryons might manifest itself. At present, however, the very short lifetimes of the heavy bottom and charm quarks preclude any practical applications of such reactions.

The Large Hadron Collider should be capable of testing quark fusion.

logo

Don’t miss the latest future news

Subscribe and get a FREE Ebook