Stanford New Measurement to Ensure High Quality Quantum Dots

Stanford has a new measurement technique for quantum dots. Uncertainty about the quality of quantum dots are holding back the use of quantum dots. Above – A close-up artist’s rendering of quantum dots emitting light they’ve absorbed. (Image credit: Ella Marushchenko) Quantum dots are strikingly defect-tolerant. The measurement technique is the first to firmly resolve how different quantum dot structures compare to each other – quantum dots with precisely eight atomic layers of a special coating material emitted light the fastest, an indicator of superior quality. The shape of those dots should guide the design for new light-emitting materials. They check for excess heat produced by energized quantum dots, rather than only assessing light emission because excess heat is a signature of inefficient emission. This technique, commonly used for other materials, had never been applied to measure quantum dots in this way and it was 100 times more precise than what others have used in the past. They found that groups of quantum dots reliably emitted about 99.6 percent of the light they absorbed (with a potential error of 0.2 percent in either direction), which is comparable to the best single-crystal emissions. If the materials reach efficiencies at or above 99.999 percent, that will open up the possibility for new technologies. These could include new glowing dyes to enhance our ability to look at biology at the atomic scale, luminescent cooling and luminescent solar concentrators, which allow a relatively small set of solar cells to take in energy from a large area of solar radiation. All this being said, the measurements they’ve already established are a milestone of their own, likely to encourage a more immediate boost in quantum dot research and applications. Science – Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield

Superefficient light emission

A challenge to improving synthesis methods for superefficient light-emitting semiconductor nanoparticles is that current analytical methods cannot measure efficiencies above 99%. Hanifi et al. used photothermal deflection spectroscopy to measure very small nonradiative decay components in quantum dot photoluminescence. The method allowed them to tune the synthesis of CdSe/CdS quantum dots so that the external luminescent efficiencies exceeded 99.5%. This is important for applications that require an absolute minimum amount of photon energy to be lost as heat, such as photovoltaic luminescent concentrators.

Abstract

A variety of optical applications rely on the absorption and reemission of light. The quantum yield of this process often plays an essential role. When the quantum yield deviates from unity by significantly less than 1%, applications such as luminescent concentrators and optical refrigerators become possible. To evaluate such high performance, we develop a measurement technique for luminescence efficiency with sufficient accuracy below one part per thousand. Photothermal threshold quantum yield is based on the quantization of light to minimize overall measurement uncertainty. This technique is used to guide a procedure capable of making ensembles of near-unity emitting cadmium selenide/cadmium sulfide (CdSe/CdS) core-shell quantum dots. We obtain a photothermal threshold quantum yield luminescence efficiency of 99.6 ± 0.2%, indicating nearly complete suppression of nonradiative decay channels.

logo

Don’t miss the latest future news

Subscribe and get a FREE Ebook