The key innovation of our propulsion concept is the unique coupling of a neutral particle beam with a laser beam, a scheme which nearly eliminates thermal expansion and diffraction during beam propagation through space. In Phase I, the physical basis of this concept and the unique features of this unexplored mode of propulsion were investigated. Through this effort, the underlying physical foundation has been verified and the governing equations have been derived from first principles. Exploration of numerical approaches to high fidelity modeling has also been initiated. Using a mission design tool developed in Phase I, a strong scaling of payload mass with velocity was discovered, leading to the finding that a 60-year mission at 7.5% the speed of light provides a payload mass of order 1 kg. A survey of the technical literature revealed that the basic elements of the combined beam propulsion system currently exist or are near-term extrapolations of present capabilities. The Phase I results, having validated the physical basis and motivating application of this new propulsion technology, advanced its technology readiness from TRL 0 to TRL 2.
The primary research objectives of the Phase II study are:
A) to analyze the feasibility and design of momentum transfer mechanisms to generate thrust for the spacecraft,
B) to understand the dynamical behavior of the combined beam system through computational modeling, and
C) to develop experimental capability for a high mass flow rate and low divergence neutral beam source. New computational tools are needed to address the stability of self-guiding, and will proceed through improving and coupling the current 2D axisymmetric beam propagation models developed in Phase I.
A fully-coupled solution framework running on high performance computing resources will allow investigation of self-guided propagation, including the effects of laser heating and radial instabilities and their dependence on non-dimensional system parameters. The development of the necessary atomic beam source will be addressed through a specialized laboratory facility for cold neutral beam experiments based on laser Doppler cooling of a supersonic alkali vapor jet. This cold atomic beam will be injected into an extended path, ultra-high vacuum system to study its properties during propagation. Diagnostic measurements of the beam thrust, density profile and temperature at stations along the propagation path will provide fundamental data for characterizing the system performance and validating numerical models. Through the above combined theoretical, modeling and experimental efforts, we expect to advance self-guided beamed propulsion from TRL 2 to TRL 3+ by the end of the Phase II research program.
Brian Wang is a Futurist Thought Leader and a popular Science blogger with 1 million readers per month. His blog Nextbigfuture.com is ranked #1 Science News Blog. It covers many disruptive technology and trends including Space, Robotics, Artificial Intelligence, Medicine, Anti-aging Biotechnology, and Nanotechnology.
Known for identifying cutting edge technologies, he is currently a Co-Founder of a startup and fundraiser for high potential early-stage companies. He is the Head of Research for Allocations for deep technology investments and an Angel Investor at Space Angels.
A frequent speaker at corporations, he has been a TEDx speaker, a Singularity University speaker and guest at numerous interviews for radio and podcasts. He is open to public speaking and advising engagements.