Elon Musk Explains the Greatness of the SpaceX Super Heavy Starship, Space and Future

Elon Musk describes the various aspects of the greatness of the SpaceX Super Heavy Starship.

Elon Musk started the presentation at 6:28 PST.

Elon Musk called the orbital prototype as the most inspiring thing he has ever seen.

The point of the presentation is to inspire the public and get people excited about space and the future.

Do we want to choose the future where we are on many world and exploring the stars? The critical breakthrough is to make space travel like air travel. We fly the airplane many time. We flew 747s about 30,000 to 100,000 times over its life. We fly them for decades and fly them pretty much every day.

He talked about the Falcon 1 and the problems recovering the first stage using a parachute. The first stage comes in at mach 10 and hits the atmosphere like a brick wall.

He reviewed the grasshopper and the Falcon 9.

He reviewed the Falcon Heavy. The first successful flight was only about 20 months ago.

They are changing the control of the re-entry SpaceX Super Heavy Starship to being more like a skydiver than an airplane.

The dry mass of the starship will be about 120 tons, but they hope to bring it down to 110 tons and maybe eventually to 90 tons.

The payload will start at about 110 tons and could reach 150 tons.

They will 3.5 tons for every ton of fuel.

The Starship will have 3 sea-level raptor engines that are gimballed. They move.
The Starship will have 3 vacuum raptor engines.

They have glass-like hexagonal heat shield tiles.

The 301 Stainless Steel was the best design decision. The steel is stronger at very cold and very hot temperatures. It is twice as strong at carbon fiber at cryo temperatures.

The cool side of the rocket needs no heatshield.

The windward side has far less heatshield. They only need to have the interface side of the tile to get to temperatures below the melting point of the steel. The steel has 1500C degree melting point.

$130,000 per ton of carbon fiber. $2500 per ton for the stainless steel.

Steel is easy to weld.

The steel could be cutup and modified and used for other things on Mars and the moon.

The Super Heavy booster will have 24 to 37 raptor engines. The number will depend upon the missions.

They will get to over 1.5 thrust to weight ratio.

Refueling in orbit is key to developing the moon and Mars. Here are scenes from the SpaceX Super Heavy Starship animation.

Refueling in orbit is actually easier than docking with the international space station.

Elon made his multi-planet pitch again.

There is a delay and then questions and answers with Elon.

They will not fly to orbit with the Mark 1. They will fly to orbit with the Mark 3. They will start building the Mark 3 in about three months.

They will start building the boosters in Florida and Texas as fast they can.
They are making improvements with each new item.

They will transition to hot gas thrusters around Mark 3. This will be a transition from an ISP of 60 to about 360.

They will have one seam welds with thinner metal in later versions. They will be able to build ships at an amazing rate compared to space industry standards.

Higher efficiency maneuvering thrusters will be able to move the ship without the main engines.

They will be pressure fed and will be able to fire from any angle and any Gs.

Starship will be able to fly single-stage from the moon to the Earth.

Less than 5% of the SpaceX resources were spent on the Starship prototype.

Most of the resources are on the Falcon, Dragon and Crew Dragon to meet obligations to NASA and others.

They did the work outside to avoid time constructing buildings.

Elon says, “If it is long it is wrong, and if it is tight it is right.” This is his management philosophy. The best design is to undesign. What did you delete. They iterate on speeding up their processes.

Long term they will produce methane fuel using solar power.

The main constraint on the Super-Heavy booster is ramping up the production of the Raptor engines.

They will need 100 Raptor engines to get to the orbital test. They build one Raptor engine currently every eight days. On 2 months they want to get to one Raptor engine every two days. By Q12020, they want to get to one engine every day. This means the orbital flight would not be until about March, 2020.

SpaceX wants to be able eventually refly boosters up to 20 times a day.
They will fly the Starship about 3-4 times a day. The orbital limitation is about the orbits. This would not be a limitation for a point to point version.

The fully reusable fleet of Super Heavy Starship will increase humanities launch capacity by 10000 times. This is max theoretical.

With 20 rockets you could put 3 million tons per year into orbit.

Less than one year to start from the steel design to the current state. Four months to start building the orbital prototype to the current state.

Tesla’s will be able to operate on Mars. They need no oxygen.
They will bring boring machines to mine water, get materials for bricks and build underground bases.

Mission Accomplished- Elon Musk inspired people about space and the future.

SOURCES- SpaceX, Elon Musk
Written By Brian Wang, Nextbigfuture.com

12 thoughts on “Elon Musk Explains the Greatness of the SpaceX Super Heavy Starship, Space and Future”

  1. Think about this. If you can go back in time, then that means the time in question is still there for you to go back to. That means that all of us are functionally immortal. Within our frame of reference (lifetime), we will always exist.

  2. Without payload, Falcon Heavy has a 1.6 TWR at liftoff. The Russian Proton-M is something like 1.52 without payload I believe. The Space Shuttle is not strictly liquid-fueled but at liftoff it’s also 1.5 or so with the SRBs and the SSMEs all going.

  3. “will get to over 1.5 thrust to weight ratio” is misleading. The thrust to weight ratio that Musk was talking about (though he didn’t make it clear) was the takeoff thrust to the takeoff mass. The T/M ratio subsequently gets a lot higher as the fuel load burned off.

    A 1.5 thrust-to-mass at takeoff is unusually high for a large liquid-fueled rocket. It means that the vehicle is accelerating at 0.5 g on the initial vertical ascent. That would be experienced by the crew as 1.5 gravities of acceleration, since earth’s gravity and the gravity from vertical acceleration add. I believe the thrust to mass ratio at liftoff for the Saturn 5 was something like 1.2. It was accelerating upward initially at only 0.2 g, which meant that 5/6ths of of it engine thrust at liftoff was being used just to fight gravity.

    The upside of a higher thrust-to-weight ratio at liftoff is that less propellant is burned to counter gravity. The downside is that the vehicle goes transonic and experiences “max Q” lower in the atmosphere where the air is still pretty dense. It has to be much sturdier.

  4. If this man manages to put human civilization into space age then he will be among greatest people who ever lived.

    Lack of time travellers from the future worries me however.

Comments are closed.