New simulations by a research team led by UC San Diego’s Alexey Arefiev point the way toward making matter from light. The process starts by aiming a high-power laser at a target to generate a magnetic field as strong as that of a neutron star. This field generates gamma ray emissions that collide to produce—for the very briefest instant—pairs of matter and antimatter particles.
Extreme Light Infrastructure (ELI) high-power laser facilities in Eastern Europe could produce real results in one to two years.
New simulations suggest that by increasing the size of the focal spot and boosting the laser power to around 4 petawatts, the laser’s intensity could remain fixed and still create the strong (1000 Tesla) magnetic field.
SOURCES- UCSD, Physical Review Applied
Written By Brian Wang, Nextbigfuture.com
Brian Wang is a Futurist Thought Leader and a popular Science blogger with 1 million readers per month. His blog Nextbigfuture.com is ranked #1 Science News Blog. It covers many disruptive technology and trends including Space, Robotics, Artificial Intelligence, Medicine, Anti-aging Biotechnology, and Nanotechnology.
Known for identifying cutting edge technologies, he is currently a Co-Founder of a startup and fundraiser for high potential early-stage companies. He is the Head of Research for Allocations for deep technology investments and an Angel Investor at Space Angels.
A frequent speaker at corporations, he has been a TEDx speaker, a Singularity University speaker and guest at numerous interviews for radio and podcasts. He is open to public speaking and advising engagements.