MIT and DOE Work on Lower Cost Nuclear Reactors Using AI

The US Department of Energy is working on advanced nuclear reactors that have lower manufacturing and operating costs. The Generating Electricity Managed by Intelligent Nuclear Assets (GEMINA) program as $27 million in funding. GEMINA is accelerating research, discovery, and development of new digital technologies that would produce effective and sustainable reductions in O&M costs.

MIT-led teams will collaborate with leading industry partners with practical O&M experience and automation to support the development of digital twins. Digital twins are virtual replicas of physical systems that are programmed to have the same properties, specifications, and behavioral characteristics as actual systems. The goal is to apply artificial intelligence, advanced control systems, predictive maintenance, and model-based fault detection within the digital twins to inform the design of O&M frameworks for advanced nuclear power plants.

There are three MIT teams and six non-MIT teams in the GEMINA program.

1. NSE professors Emilio Baglietto and Koroush Shirvan will collaborate with researchers from GE Research and GE Hitachi. The GE Hitachi BWRX-300, a small modular reactor designed to provide flexible energy generation, will serve as a reference design. BWRX-300 is a promising small modular reactor concept that aims to be competitive with natural gas to realize market penetration in the United States. The team will assemble, validate, and exercise high-fidelity digital twins of the BWRX-300 systems. Digital twins address mechanical and thermal fatigue failure modes that drive O&M activities well beyond selected BWRX-300 components and extend to all advanced reactors where a flowing fluid is present.

2. MIT Principal Research Engineer and Interim Director of the Nuclear Reactor Lab Gordon Kohse will lead a collaboration with MPR Associates to generate critical irradiation data to be used in digital twinning of molten-salt reactors (MSRs). MSRs produce radioactive materials when nuclear fuel is dissolved in a molten salt at high temperature and undergoes fission as it flows through the reactor core. Understanding the behavior of these radioactive materials is important for MSR design and for predicting and reducing O&M costs — a vital step in bringing safe, clean, next-generation nuclear power to market.

3. A third MIT team will work closely with the Electric Power Research Institute (EPRI) on a new paradigm for reducing advanced reactor O&M. This is a proof-of-concept study that will explore how to move away from the traditional maintenance and repair approach. The EPRI-led project will examine a “replace and refurbish” model in which components are intentionally designed and tested for shorter and more predictable lifetimes with the potential for game-changing O&M cost savings. This approach is similar to that adopted by the commercial airline industry, in which multiple refurbishments — including engine replacement — can keep a jet aircraft flying economically over many decades.

SOURCES- MIT
Written By Brian Wang

Subscribe on Google News