Several Lab on a Chip and microfluidic Advances for more accurate diagnosis in minutes instead of hours or days

Ad Support : Nano Technology   Netbook    Technology News    Computer Software

University of Florida researchers have helped to develop a device that quickly identifies genes and proteins in body fluids — a technique that could make a vital difference to the trauma patients doctors treat.


Previous devices required 4 to 8 milliliters of fluids, the work of a highly skilled technician and several hours to complete analysis.



“We’re getting 100 nanograms of RNA with 0.15 (milliliters) of blood and we’re doing it all in 30 minutes,” said Kenneth Kotz, a research fellow in the department of surgery at Massachusetts General Hospital. “No one’s really ever been able to do this for neutrophils. No one’s been able to demonstrate the speed and the sample quality with these small blood volumes.”



Kotz built the device, which is laced with antibodies that capture the individual cells when a sample of fluid, such as blood or urine, is pumped through it. Nucleic acids or proteins from the cells are then extracted from the cassette, allowing researchers to analyze how specific genes are expressed.

Testing showed the device yielded pure samples of neutrophils, and their gene expression pattern was consistent with results from tests performed in previous studies.



“We’ve identified 63 genes that are differentially expressed,” Moldawer said, “so that when you are admitted to the emergency room after severe trauma, we can hopefully tell with better certainty whether you’re going to have a good or bad outcome (by looking at these genes).”


Nature Medicine – Clinical microfluidics for neutrophil genomics and proteomics

Neutrophils have key roles in modulating the immune response. We present a robust methodology for rapidly isolating neutrophils directly from whole blood with ‘on-chip’ processing for mRNA and protein isolation for genomics and proteomics. We validate this device with an ex vivo stimulation experiment and by comparison with standard bulk isolation methodologies. Last, we implement this tool as part of a near-patient blood processing system within a multi-center clinical study of the immune response to severe trauma and burn injury. The preliminary results from a small cohort of subjects in our study and healthy controls show a unique time-dependent gene expression pattern clearly demonstrating the ability of this tool to discriminate temporal transcriptional events of neutrophils within a clinical setting.