Edge Question 2011 – What scientific concept would improve everybody’s Cognitive Toolkit ?

What scientific concept would improve everybody’s Cognitive Toolkit ?

The term ‘scientific”is to be understood in a broad sense as the most reliable way of gaining knowledge about anything, whether it be the human spirit, the role of great people in history, or the structure of DNA. A “scientific concept” may come from philosophy, logic, economics, jurisprudence, or other analytic enterprises, as long as it is a rigorous conceptual tool that may be summed up succinctly (or “in a phrase”) but has broad application to understanding the world.

Seth Lloyd – The ability to reason clearly in the face of uncertainty.

If everybody could learn to deal better with the unknown, then it would improve not only their individual cognitive toolkit (to be placed in a slot right next to the ability to operate a remote control, perhaps), but the chances for humanity as a whole.

A well-developed scientific method for dealing with the unknown has existed for many years — the mathematical theory of probability. Probabilities are numbers whose values reflect how likely different events are to take place. People are bad at assessing probabilities. They are bad at it not just because they are bad at addition and multiplication. Rather, people are bad at probability in a deep, intuitive level: they overestimate the probability of rare but shocking events — a burglar breaking into your bedroom while you’re asleep, say. Conversely, they underestimate the probability of common, but quiet and insidious events — the slow accretion of globules of fat on the walls of an artery, or another ton of carbon dioxide pumped into the atmosphere.

I can’t say that I’m very optimistic about the odds that people will learn to understand the science of odds. When it comes to understanding probability, people basically suck. Consider the following example, based on a true story, and reported by Joel Cohen of Rockefeller University. A group of graduate students note that women have an significantly lower chance of admission than men to the graduate programs at a major university. The data are unambiguous: women applicants are only two thirds as likely as male applicants to be admitted. The graduate students file suit against the university, alleging discrimination on the basis of gender. When admissions data are examined on a department by department basis, however, a strange fact emerges: within each department, women are MORE likely to be admitted than men. How can this possibly be?

The answer turns out to be simple, if counterintuitive. More women are applying to departments that have few positions. These departments admit only a small percentage of applicants, men or women. Men, by contrast, are applying to departments that have more positions and that admit a higher percentage of applicants. Within each department, women have a better chance of admission than men — it’s just that few women apply to the departments that are easy to get into.

This counterintuitive result indicates that the admissions committees in the different departments are not discriminating against women. That doesn’t mean that bias is absent. The number of graduate fellowships available in a particular field is determined largely by the federal government, which chooses how to allocate research funds to different fields. It is not university that is guilty of sexual discrimination, but the society as a whole, which chose to devote more resources — and so more graduate fellowships — to the fields preferred by men.

Carl Page- the power of ten Any citizen who wants to vote responsibly needs to have a sense of proportion and be able to weigh the choices our democratic government is making quickly and easily.

Look at the total dollars to be spent and compare it the total number of people who might benefit to get a cost per person.

Risk Literacy

Statistical thinking is the ability to understand and critically evaluate uncertainties and risks. Yet 76 percent of U.S. adults and 54 percent of Germans do not know how to express a 1 in 1,000 chance as a percentage (0.1%). Schools spend most of their time teaching children the mathematics of certainty — geometry, trigonometry — and spend little if any time on the mathematics of uncertainty. If taught at all, it is mostly in the form of coin and dice problems that tend to bore young students to death. But statistical thinking could be taught as the art of real-world problem solving, i.e. the risks of drinking, AIDS, pregnancy, horseback riding, and other dangerous things. Out of all mathematical disciplines, statistical thinking connects most directly to a teenager’s world.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

netseer_tag_id = “2397”;

netseer_ad_width = “750”;

netseer_ad_height = “80”;

netseer_task = “ad”;

Featured articles

Ocean Floor Gold and Copper
   Ocean Floor Mining Company

var MarketGidDate = new Date();

About The Author

Add comment

E-mail is already registered on the site. Please use the Login form or enter another.

You entered an incorrect username or password

Sorry, you must be logged in to post a comment.