Israel has a desalination fresh water surplus and desalination could be used to reduce middle east conflicts

Just a few years ago, in the depths of its worst drought in at least 900 years, Israel was running out of water. Now it has a surplus. That remarkable turnaround was accomplished through national campaigns to conserve and reuse Israel’s meager water resources, but the biggest impact came from a new wave of desalination plants.

Sorek desalination plant uses 16 inch membranes which are more efficient

Desalination works by pushing saltwater into membranes containing microscopic pores. The water gets through, while the larger salt molecules are left behind. But microorganisms in seawater quickly colonize the membranes and block the pores, and controlling them requires periodic costly and chemical-intensive cleaning. But Bar-Zeev and colleagues developed a chemical-free system using porous lava stone to capture the microorganisms before they reach the membranes. It’s just one of many breakthroughs in membrane technology that have made desalination much more efficient. Israel now gets 55 percent of its domestic water from desalination, and that has helped to turn one of the world’s driest countries into the unlikeliest of water giants.

“The Middle East is drying up,” says Osnat Gillor, a professor at the Zuckerberg Institute who studies the use of recycled wastewater on crops. “The only country that isn’t suffering acute water stress is Israel.”

That water stress has been a major factor in the turmoil tearing apart the Middle East. Water will likely be a source of conflict in the Middle East in the future.

Syria fared much worse in the drought. As the drought intensified and the water table plunged, Syria’s farmers chased it, drilling wells 100, 200, then 500 meters (300, 700, then 1,600 feet) down in a literal race to the bottom. Eventually, the wells ran dry and Syria’s farmland collapsed in an epic dust storm. More than a million farmers joined massive shantytowns on the outskirts of Aleppo, Homs, Damascus and other cities in a futile attempt to find work and purpose.
Water is driving the entire region to desperate acts.

According to the authors of “Climate Change in the Fertile Crescent and Implications of the Recent Syrian Drought,” a 2015 paper in the Proceedings of the National Academy of Sciences, was the tinder that burned Syria to the ground. “The rapidly growing urban peripheries of Syria,” they wrote, “marked by illegal settlements, overcrowding, poor infrastructure, unemployment, and crime, were neglected by the Assad government and became the heart of the developing unrest.”

Israel started in 2007, when low-flow toilets and showerheads were installed nationwide and the national water authority built innovative water treatment systems that recapture 86 percent of the water that goes down the drain and use it for irrigation — vastly more than the second-most-efficient country in the world, Spain, which recycles 19 percent.

Even with those measures, Israel still needed about 1.9 billion cubic meters (2.5 billion cubic yards) of freshwater per year and was getting just 1.4 billion cubic meters (1.8 billion cubic yards) from natural sources. That 500-million-cubic-meter (650-million-cubic-yard) shortfall was why the Sea of Galilee was draining like an unplugged tub and why the country was about to lose its farms.

The country faces a previously unfathomable question: What to do with its extra water? Enter desalination. The Ashkelon plant, in 2005, provided 127 million cubic meters (166 million cubic yards) of water. Hadera, in 2009, put out another 140 million cubic meters (183 million cubic yards). And now Sorek, 150 million cubic meters (196 million cubic yards). All told, desalination plants can provide some 600 million cubic meters (785 million cubic yards) of water a year, and more are on the way.

Desalination used to be an expensive energy hog, but the kind of advanced technologies being employed at Sorek have been a game changer. Water produced by desalination costs just a third of what it did in the 1990s. Sorek can produce a thousand liters of drinking water for 58 cents. Israeli households pay about US$30 a month for their water — similar to households in most U.S. cities, and far less than Las Vegas (US$47) or Los Angeles (US$58).

IDE, the Israeli company that built Ashkelon, Hadera and Sorek, recently finished the Carlsbad desalination plant in Southern California, a close cousin of its Israel plants, and it has many more in the works. Worldwide, the equivalent of six additional Sorek plants are coming online every year. The desalination era is here.

The US$900 million Red Sea–Dead Sea Canal project is a joint venture between Israel and Jordan to build a large desalination plant on the Red Sea, where they share a border, and divide the water among Israelis, Jordanians and the Palestinians. The brine discharge from the plant will be piped 100 miles north through Jordan to replenish the Dead Sea, which has been dropping a meter per year since the two countries began diverting the only river that feeds it in the 1960s. By 2020, these old foes will be drinking from the same tap.

1 thought on “Israel has a desalination fresh water surplus and desalination could be used to reduce middle east conflicts”

Comments are closed.