DNA origami nanorobots shown in demo of drug delivery in live cockroaches with hope of human trials by 2019 and scaling DNA nanobot computing to Commodore 64 levels

Researchers have injected various kinds of DNA nanobots into cockroaches. Because the nanobots are labelled with fluorescent markers, the researchers can follow them and analyse how different robot combinations affect where substances are delivered. The team says the accuracy of delivery and control of the nanobots is equivalent to a computer system.

This is the development of the vision of nanomedicine.
This is the realization of the power of DNA nanotechnology.
This is programmable dna nanotechnology.

The DNA nanotechnology cannot perform atomically precise chemistry (yet), but having control of the DNA combined with advanced synthetic biology and control of proteins and nanoparticles is clearly developing into very interesting capabilities.

“This is the first time that biological therapy has been able to match how a computer processor works,” says co-author Ido Bachelet of the Institute of Nanotechnology and Advanced Materials at Bar Ilan University.

The team says it should be possible to scale up the computing power in the cockroach to that of an 8-bit computer, equivalent to a Commodore 64 or Atari 800 from the 1980s. Goni-Moreno agrees that this is feasible. “The mechanism seems easy to scale up so the complexity of the computations will soon become higher,” he says.

An obvious benefit of this technology would be cancer treatments, because these must be cell-specific and current treatments are not well-targeted. But a treatment like this in mammals must overcome the immune response triggered when a foreign object enters the body.

Bachelet is confident that the team can enhance the robots’ stability so that they can survive in mammals. “There is no reason why preliminary trials on humans can’t start within five years,” he says

Biological systems are collections of discrete molecular objects that move around and collide with each other. Cells carry out elaborate processes by precisely controlling these collisions, but developing artificial machines that can interface with and control such interactions remains a significant challenge. DNA is a natural substrate for computing and has been used to implement a diverse set of mathematical problems, logic circuits and robotics. The molecule also interfaces naturally with living systems, and different forms of DNA-based biocomputing have already been demonstrated. Here, we show that DNA origami can be used to fabricate nanoscale robots that are capable of dynamically interacting with each other in a living animal. The interactions generate logical outputs, which are relayed to switch molecular payloads on or off. As a proof of principle, we use the system to create architectures that emulate various logic gates (AND, OR, XOR, NAND, NOT, CNOT and a half adder). Following an ex vivo prototyping phase, we successfully used the DNA origami robots in living cockroaches (Blaberus discoidalis) to control a molecule that targets their cells.

Nature Nanotechnology – Universal computing by DNA origami robots in a living animal

44 pages of supplemental information

Ido Bachelet’s moonshot to use nanorobotics for surgery has the potential to change lives globally. But who is the man behind the moonshot?

Ido graduated from the Hebrew University of Jerusalem with a PhD in pharmacology and experimental therapeutics. Afterwards he did two postdocs; one in engineering at MIT and one in synthetic biology in the lab of George Church at the Wyss Institute at Harvard.

Now, his group at Bar-Ilan University designs and studies diverse technologies inspired by nature.

They will deliver enzymes that break down cells via programmable nanoparticles.
Delivering insulin to tell cells to grow and regenerate tissue at the desired location.
Surgery would be performed by putting the programmable nanoparticles into saline and injecting them into the body to seek out remove bad cells and grow new cells and perform other medical work.

Research group website is here.

Nanoparticles with computational logic has already been done

Load an ensemble of drugs into many particles for programmed release based on situation that is found in the body

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

Subscribe on Google News