Categories: EnergyScienceTechnologyWorld

C$49.3 million investment in General Fusion to 2023 Nuclear Fusion Demo

The Government of Canada has made a new C$49.3-million investment in General Fusion, a clean technology company seeking to transform the world’s energy supply with safe, sustainable and economical fusion energy.

The Honourable Navdeep Bains, Minister of Innovation, Science and Economic Development, together with the Honourable Harjit Singh Sajjan, Minister of National Defence, announced the investment.

The funding will help General Fusion create technology leading to 400 new jobs and support its project to develop a first-of-its-kind large-scale prototype plant that will demonstrate a practical approach to commercializing affordable, abundant, safe and emission-free electricity from fusion energy. General Fusion’s technology has the potential to revolutionize how sustainable energy is generated and position British Columbia—and Canada—as a global leader in fusion technology.

Thanks in part to this federal investment through the Strategic Innovation Fund, General Fusion will expand its collaboration with post-secondary institutions and employ inclusive hiring practices as the company grows its workforce. As a result of this project, Canadians will see more intellectual property developed and retained in Canada.

Quotes from Canadian Government on General Fusion

“General Fusion is working at the forefront of clean technology. It has the real potential to transform how the world generates abundant clean energy. This will help us reduce our environmental impacts. Our government is proud to invest in this innovative project to help create hundreds of middle-class jobs and position Canada as a world leader in fusion energy technology.”

– The Honourable Navdeep Bains, Minister of Innovation, Science and Economic Development

“Innovative companies such as General Fusion are a key part of our government’s plan to grow the economy and create well-paying middle-class jobs for British Columbians. As a leader in the development of safe, affordable and emission-free electricity, General Fusion is a testament to the kind of quality work that this region is capable of—and the quality talent that is right here in British Columbia.”

– The Honourable Harjit Singh Sajjan, Minister of National Defence

“General Fusion’s ground-breaking technology holds incredible promise in addressing climate change and revolutionizing global clean energy markets. Our government continues to support B.C. tech and innovation, and we are proud to have a world-leading company like General Fusion creating jobs in our strong and sustainable economy, because good jobs in B.C. mean a better life for people and their families.”

– The Honourable Bruce Ralston, B.C. Minister of Jobs, Trade and Technology

“This investment by Canada in General Fusion’s transformative clean energy technology is evidence of its commitment to meeting the country’s climate change goals while fostering truly sustainable growth—sustainable growth that will be powered by the disruptively competitive economics and environmentally responsible benefits of fusion energy. This Strategic Innovation Fund investment and Canada’s expectation for a financial return on this investment are a vote of confidence in General Fusion’s ability to successfully commercialize its technology and in our ability to deliver new jobs and new opportunities throughout British Columbia and across Canada. We are grateful to Canada for its long-standing support of the company, support that has helped General Fusion become the world’s most advanced private fusion technology venture.”

– Christofer Mowry, CEO, General Fusion

Quick Facts

* Fusion energy has been proven in laboratories, where closely contained fusion reactions release energy from superheated hydrogen gas, energy which can be captured and converted to electricity. Fusion results in no carbon dioxide emissions and does not produce high-level nuclear waste.
* According to the International Atomic Energy Agency, in case of failure, fusion reactors automatically come to a halt within a few seconds, with no harmful effects being produced.
* General Fusion will invest at least $150 million in Research and Development with the potential for over $250 million in additional investment for the construction of a demonstration plant.

Founded in 2002, General Fusion employs more than 70 people in Burnaby and is the only Canadian company working to commercialize fusion technology.

Clean technologies contributed over $26 billion, or 1.4%, to Canada’s GDP in 2016. Of this, approximately $8 billion is exported. Clean technologies also provide approximately 178,000 well-paying jobs.

This investment supports the Innovation and Skills Plan, the Pan-Canadian Framework on Clean Growth and Climate Change, as well as Canada’s commitments toward Mission Innovation, a global initiative of 23 countries and the European Union to dramatically accelerate global clean energy innovation.

General Fusion Developing Power Generating Prototype

Nextbigfuture interviewed Christofer Mowry, the CEO of General Fusion. The highlights are that General Fusion is rapidly pushing ahead to achieve commercialization and the next step is to make a 70% scale pilot plant that will prove out the viability of generating electricity from General Fusion’s magnetized target nuclear fusion.

General Fusion does not need to demonstrate fusion containment because they are pulsed power systems like a diesel engine or steampunk fusion.

The pilot system will prove three things:
1. Fusion conditions will be repeatably produced
2. There will be a kill chain from neutrons to electrons
3. Economics will be validated.

Simulations will be used to validate the economics and design specifics to move to a 100% system.

The next system after the 70% scale system will be a full commercial system.

The Demo system will cost several hundred million dollars. General fusion is fundraising now. Several existing funders (Jeff Bezos, Canadian and Malaysian government) are likely participants in the next round. However, the fundraising cannot have actual disclosure until it is completed. As of late 2016, General Fusion had received over $100 million in funding from a global syndicate of investors and the Canadian Government’s Sustainable Development Technology Canada (SDTC) fund. They now have another C$49 million from the government of Canada.

All of the individual components have been matured enough to enable integration into a prototype pilot plant.

Over the five years of the demo plant, there will be design, construction and a nominal 18 months of testing.

The plasma injector component built so far is a 2-meter plasma injector. It will be a 3-meter injector for the pilot plant.

Titanium fabrication is with GE Additive as a partner.

The current component for has 14 pistons and was not to achieve plasma compression but to work out other engineering issues.

The demo system will have several hundred pistons. Perhaps around 500.

The next system could have more or fewer pistons depending upon how experiments inform the design and how smoothly the plasma will need to be compressed.

It will be deuterium fusion.
The demo plant will not add tritium. Addition of tritium is a well-understood process and would have a predictable impact.
Tritium will be added in the follow-up commercial system.

General Fusion took its PI2 plasma injector to the 2018 GLOBE Forum in Vancouver.

Chris Mowry

Christofer M. Mowry, Chief Executive Officer & Director

Chris Mowry has 30 years of global experience in the energy and infrastructure sectors, including power, oil & gas, automation, and process industries. Through his leadership he has revitalized businesses in GE and Babcock & Wilcox Company (BWC), founded disruptive energy technology company Generation mPower, and has overseen the transformation of complex international organizations.

Chris was most recently Chief Executive Officer and Chairman of General Synfuels International, Inc. (GSI), a privately held company developing in situ oil shale gasification technology that produces hydrocarbons in an economically competitive and environmentally responsible manner from oil shales. Prior to GSI, Chris was the Founder and CEO of Generation mPower, a company formed in 2011 to design, license, and deliver Small Modular Reactors (SMRs), the next generation of nuclear energy technology.

Previously, Chris was President of B&W Nuclear Energy, a division of The Babcock & Wilcox Company. Before joining B&W, Chris was the President and Chief Operating Officer of WSI, a private equity-backed field services and manufacturing company serving the energy and petrochemical industries.

Chris spent 10 years with GE Energy in various management roles, growing the firm’s automation business by 34% in two years. He began his career with the Philadelphia Electric Company, and holds a Bachelor of Science (Engineer & Astronomy) from Swarthmore College, and a Master’s of Science in Mechanical Engineering from Drexel University.

Dr. Michel Laberge, Founder and Chief Scientist

Dr. Michel Laberge is a physicist with widespread practical experience in plasma physics and modern plasma diagnostic techniques. He has extensive knowledge of the latest technologies related to electronics, computers, materials, lithography, optics and fabrication, and is experienced at designing and constructing test apparatuses to evaluate technical concepts.

Components of the General Fusion system

A magnetized target fusion system has 3 main components: a plasma injector, which supplies the fuel; an array of pistons, to compress the fuel; and a chamber of spinning liquid metal, to hold the fuel and capture the energy.

Guided by advanced computer simulation, General Fusion is developing and optimizing each of these components in preparation to build a demonstration fusion power plant.

General Fusion has built a world-class Magnetized Target Fusion research and development team consisting of over 50 research and development professionals who have demonstrated the ability to quickly and cost-effectively design, simulate, prototype, and test advanced fusion systems.

General Fusion’s science team includes PhD scientists from leading fusion research institutions including L’École Polytechnique in France, the Culham Centre for Fusion Technology in the UK, the Joint Institute for High Temperatures at the Russian Academy of Sciences, and Kyushu University in Japan.

Additionally, General Fusion has supplemented its research group with experts in regulatory affairs, project management, government relations, intellectual property, finance, and strategic business development.

Inside a General Fusion plant

By harnessing the same process that powers the sun and the stars, fusion has the potential to be a zero-emission, safe and widely available source of energy.

Fusion runs on hydrogen, and this fuel must be heated to immense temperatures – over 150 million degrees Celsius – to release its energy.

Learn how a General Fusion power plant creates fusion energy with the infographic below, followed by full explanation of how the process works.

The way a General Fusion power plant works could be compared to a diesel engine: the fuel is injected into a chamber, compressed to heat it up, and the resulting burst of energy is then captured.

To get the fusion fuel to the temperatures required for fusion, the hydrogen must first be transformed from a gas to a plasma (a process called “ionization”). In a plasma state, the fuel can be heated to much higher temperatures and can be controlled using magnetic fields.

The plasma is formed at the top of the machine, and a magnetic field then pushes it into the compression chamber. At this point the plasma is around 5 million degrees Celsius – hot, but not hot enough for fusion.

Inside the compression chamber, the plasma is surrounded by a wall of liquid metal, which will capture the energy that comes out of the reaction. On the outside of the chamber are gas-driven pistons, evenly arranged around the surface.

When these pistons push down, they compress the liquid metal wall (and the plasma trapped inside it) from all sides. As the plasma gets compressed it rapidly grows hotter, until it reaches fusion temperatures and the reaction takes place. The energy from the reaction heats up the liquid metal wall, capturing the energy so that it can be used to create electricity.

The process then repeats, with cooler liquid metal cycled back in and a new plasma pulse injected into the chamber.

General Fusion’s approach is designed from the ground up to enable a practical, commercially-viable power plant. The use of pistons provides a cost-effective and well-understood way of heating the plasma, while the pulsed function of the machine avoids needing giant magnets to keep the plasma stable for long periods of time.

The liquid metal wall is another major advantage, making it possible to get the energy out of the system and convert it to electricity. This is a particularly important part, as most fusion power plant designs do not have an effective way of extracting this energy. You can learn more about how electricity is produced from fusion energy in our infographic: Bringing fusion energy to the grid.

Brian Wang

View Comments

  • I'm not suggesting that not being a white guy = deadwood.

    I'm suggesting that making "exclusivity" a priority over hiring on merit and just accepting whatever racial/religion/gender/armpit hair color distribution results from merit hiring is pretty much guaranteed to produce a less qualified workforce, because you're no longer hiring on the basis of qualifications. You're hiring on the basis of melanin, number of X chromosomes, and all sorts of other things *that aren't qualifications*.

  • I agree that you'd be better off just going with fission.

    But if you're going to do fusion, the whole molten lead first wall solves the problem of neutron damage in the first wall, which is a freaking HUGE unsolved problem in fusion reactors.

  • Nice discussion. Isn't it interesting about the isotopes of Pb being the endpoints of the uranium/thorium chains? I didn't imagine that there were lead deposits with skewed isotopics though. I see now from a quick wiki read that the isotopics "vary greatly" by sample. All the lead isotopes have low thermal neutron absorption cross sections, and I believe that lead was chosen more for its relatively low melting point. I kinda think it is a dead end, but like you said, there is plenty of experience with Pb.

  • In my experience the women engineers have been just fine.
    The dark skinned engineers have largely been just fine, though there were a couple of exceptions.
    The white male engineers have been mostly fine, though with a couple of exceptions.

    Looking at those results, it seems the females have a HIGHER rate of being fine. Probably because no woman goes into engineering unless she actually has a flair or enthusiasm for it. Women in my experience never "default" into engineering, they default into Vet or health sciences or arts.

    Of course this means that pushing more women into engineering removes the one advantage that current women engineers have.

    I have ALSO worked with engineers (of various colours, but all men so far) who were hired for reasons other than being the best person for the job. They were ALL a complete waste of time and money.

  • Right, and there isn't a piston where the injector is. So, it is going to have an odd shape.. its a gimmick machine.

  • Upon discovering Wittgenstein was interested in the philosophy of language, a man at a party once told LW that he had an astounding fact about language to share. "I must tell you Mr Wittgenstein that I am a French speaker and its astounding how well the french language conforms to the shape of my thoughts." Wittgenstein replied "THAT is almost as remarkable as my experience with German."

  • If you're going to talk about IQ scores and statistics, you must at least use the basic concepts of stats and psychometrics correctly, or barring that level of accuracy, at bare minimum not terribly incorrectly. In an early post, you said that Asians are 5 to 7 points above "white average." You then state, that this does not make a big difference at the middle of the curve but at the edges its significant. Part of that is true of course. The difference between 170 and 175 is greater than 100 and 105 since it is a Gaussian distribution BUT what is not TRUE at ALL is that Asian average being 5 to 7 points better than white average implies that Asian-exceptional is also 5 to 7 points better than "white exceptional" or anything else. That simply isn't how averages work at all.
    Just because group A is better on Average than group B does NOT mean that members of group B are uniformly worse than members of group A.

    Lets take two two groups of basketball players in a hypothetical game

    players in group A, score 10,20,30 in the game their average is of course 20.

    in group B the players score 10,10,35 their average is of course lower at at 18.333 but the highest scoring player of all is in group B. Averages because they factor in the extreme data points in the exact same way can be misleading if data is lumpy. This is why statisticians use the notion of median values, a median just divides a data set in halves and says half the numbers are less than this value, half greater.

    It partitions the data to iron out lumps caused by outliers. Now even if you meant to use "median" IQ values an analogous problem persists. Just because group A has a higher median value than group B, it doesn't imply that the highest values in group A are higher than the highest values in group B, it again says nothing explicit about the extrema.
    No, the conclusion you try to draw which is just a blatant misunderstanding of statistics, is that being 5 to 7 points higher on average implies that there are TWO distinct IQ curves, and that they are simply phase shifted by 5 to 7 points. So that a person in the 99th Asian percentile would have an IQ of 145 whereas someone in the same (white) percentile would clock in at 138. Someone in the 95th white percentile would have 120 and Asian 95th would be at 125 or so, and so on. But as we've seen.. that's just NOT how averages, not how statistics, not how numbers work.

    To say nothing about the host of other problems with such shallow arguments.

Recent Posts

  • News
  • Science
  • Space
  • Technology

EXOS Aerospace Makes High School Cubesat Projects Affordable #SpaceAccess2019

EXOS Aerospace has reusable suborbital research rockets. #SpaceAccess2019

4 hours ago
  • Artificial intelligence
  • News
  • Science
  • Technology
  • World

AI: Two-way Recommendation Systems #TCRobotics

A two-way recommendation system will enable great advances in music and other kinds of business. Top recommenders can be monetized…

6 hours ago
  • Artificial intelligence
  • Medicine
  • News
  • Robotics
  • Science
  • Technology

Trexo Robotics Building Robots to Help People Walk

Trexo Robotics is on a mission to help children with disabilities walk. #TCRobotics

6 hours ago
  • Artificial intelligence
  • gadgets
  • News
  • Robotics
  • Science
  • Technology
  • World

What happens after the Industrial Robot-lution? #TCRobotics

Two centuries after the Industrial Revolution, robotics and deep learning are creating another paradigm shift in manufacturing. As more parts…

6 hours ago
  • Artificial intelligence
  • gadgets
  • News
  • Robotics
  • Science
  • Technology
  • World

Building a Better Driver #TCRobotics

Autonomous vehicles can't be as good as human drivers. They need to be better. Aurora co-founder and CPO Sterling Anderson…

7 hours ago
  • Artificial intelligence
  • News
  • Science
  • Technology
  • virtual reality
  • World

Deep Fakes With Synthetic Media #TCRobotics

AI-based tools are proving capable of fabricating or modifying imagery and audio in ways that are nearly indistinguishable from reality.…

7 hours ago