Improved Fracking Technology

Alberta Oil Magazine – Somewhere between 70 and 80 per cent of frack jobs in the world are performed in North America, providing producers with access to oil trapped in hard rock formations, shale in particular. In its World Oil Outlook 2011, the Organization of Petroleum Exporting Countries estimates production from shale reserves will help drive global production of unconventional oil from 2.3 million barrels per day in 2011 to 8.4 million barrels per day in 2035. Canada and the U.S. could supply 6.6 million barrels per day, the cartel predicts.

Oil service heavyweights like Weatherford, Baker Hughes and Schlumberger are quietly refining an earth-shattering extraction technique that has rewritten the global energy playbook.

If the past five years could be summed up in a word, it would be more. The ascent of unconventional drilling techniques has been defined by more horsepower, more fluid, more proppant, more days spent on a well site, more expensive equipment and labor. But with those higher costs, Andersen says, comes higher production; somewhere in the range of 25 times higher than a conventional completion.

Completing a well in multiple stages helps streamline completions, industry participants say. There are multi-stage frack systems available that have increased the number of stages from 20 to 40. In either case, incrementally sized plastic or metal balls drop down the well to isolate sections of the horizontal wellbore, so multiple frack jobs can be targeted into a reservoir.

Following the completion, those frack balls need to flow back to the surface for the well to start producing. As horizontal wells got longer, officials at Baker Hughes noticed that not every reservoir has enough pressure to push the balls out of the wellbore. Sand or other debris can also build up in the liner, blocking the ball’s path to the surface.

Operators could just accept the lost production or stop operations while a coiled tubing unit is brought in to remove the balls. But at a cost of $150,000 between hiring equipment and lost time, it’s not a cheap fix. Equipment shortages can exacerbate a delay. “If you don’t have a coiled tubing unit scheduled, it can be tough to get one,” Firmaniuk says.

Cue disintegrating frack balls. Using proprietary material Baker Hughes developed 15 years ago, the company created what it’s calling IN-Tallic frack balls. The disintegrating frack ball looks and feels like an aluminum ball, but its composition chemically reacts with brine fluids to disintegrate over time. “There are a lot of other balls out there that are biodegradable, but this is a chemical-degradable ball,” Firmaniuk says. The balls don’t disintegrate immediately like an Alka-Seltzer tablet. It’s a slower reaction that can take up to two months.

Schlumberger Ltd. has found a way to reduce the amount of proppant without negatively impacting production. The Houston-based company’s HiWay channeling fracture technique uses half the amount of proppant as a typical frack job by pulsing fluid without proppant in with the regular mix of fluid and proppant. The pulses are separated by a proprietary mixture of fibers and gels. They last only seconds, but create open channels for fluid to flow through, rather than flowing around the proppant. Having the pulses hold open fractured rock, rather than proppant, reduces the chance of a screen-out – where sand blocks fluid flow – and eliminates the need for a coiled tubing unit, the company says.

Screen-outs used to occur once every fifth or sixth well, Schlumberger’s Pipchuk says. “Now when you have 20 stages in a well it might happen every well,” he says. “We’ve actually seen a reduction in the industry-wide screen-out rate from about five per cent to less than 0.1 per cent.”

The advent of real-time information while fracking and improved computer modelling of geological formations will refine the process further, the completions boss says. “The major advancements are going to be maximizing the effective reservoir contact while reducing the amount of resources and footprint required,” he says. “The way to do that is not necessarily to go with brute force, but to fracture smarter, do it with intelligence.”

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

Subscribe on Google News

Improved Fracking Technology

Alberta Oil Magazine – Somewhere between 70 and 80 per cent of frack jobs in the world are performed in North America, providing producers with access to oil trapped in hard rock formations, shale in particular. In its World Oil Outlook 2011, the Organization of Petroleum Exporting Countries estimates production from shale reserves will help drive global production of unconventional oil from 2.3 million barrels per day in 2011 to 8.4 million barrels per day in 2035. Canada and the U.S. could supply 6.6 million barrels per day, the cartel predicts.

Oil service heavyweights like Weatherford, Baker Hughes and Schlumberger are quietly refining an earth-shattering extraction technique that has rewritten the global energy playbook.

If the past five years could be summed up in a word, it would be more. The ascent of unconventional drilling techniques has been defined by more horsepower, more fluid, more proppant, more days spent on a well site, more expensive equipment and labor. But with those higher costs, Andersen says, comes higher production; somewhere in the range of 25 times higher than a conventional completion.

Completing a well in multiple stages helps streamline completions, industry participants say. There are multi-stage frack systems available that have increased the number of stages from 20 to 40. In either case, incrementally sized plastic or metal balls drop down the well to isolate sections of the horizontal wellbore, so multiple frack jobs can be targeted into a reservoir.

Following the completion, those frack balls need to flow back to the surface for the well to start producing. As horizontal wells got longer, officials at Baker Hughes noticed that not every reservoir has enough pressure to push the balls out of the wellbore. Sand or other debris can also build up in the liner, blocking the ball’s path to the surface.

Operators could just accept the lost production or stop operations while a coiled tubing unit is brought in to remove the balls. But at a cost of $150,000 between hiring equipment and lost time, it’s not a cheap fix. Equipment shortages can exacerbate a delay. “If you don’t have a coiled tubing unit scheduled, it can be tough to get one,” Firmaniuk says.

Cue disintegrating frack balls. Using proprietary material Baker Hughes developed 15 years ago, the company created what it’s calling IN-Tallic frack balls. The disintegrating frack ball looks and feels like an aluminum ball, but its composition chemically reacts with brine fluids to disintegrate over time. “There are a lot of other balls out there that are biodegradable, but this is a chemical-degradable ball,” Firmaniuk says. The balls don’t disintegrate immediately like an Alka-Seltzer tablet. It’s a slower reaction that can take up to two months.

Schlumberger Ltd. has found a way to reduce the amount of proppant without negatively impacting production. The Houston-based company’s HiWay channeling fracture technique uses half the amount of proppant as a typical frack job by pulsing fluid without proppant in with the regular mix of fluid and proppant. The pulses are separated by a proprietary mixture of fibers and gels. They last only seconds, but create open channels for fluid to flow through, rather than flowing around the proppant. Having the pulses hold open fractured rock, rather than proppant, reduces the chance of a screen-out – where sand blocks fluid flow – and eliminates the need for a coiled tubing unit, the company says.

Screen-outs used to occur once every fifth or sixth well, Schlumberger’s Pipchuk says. “Now when you have 20 stages in a well it might happen every well,” he says. “We’ve actually seen a reduction in the industry-wide screen-out rate from about five per cent to less than 0.1 per cent.”

The advent of real-time information while fracking and improved computer modelling of geological formations will refine the process further, the completions boss says. “The major advancements are going to be maximizing the effective reservoir contact while reducing the amount of resources and footprint required,” he says. “The way to do that is not necessarily to go with brute force, but to fracture smarter, do it with intelligence.”

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

Subscribe on Google News