Costs Breakdown of the Hyperloop

A high speed transportation system known as Hyperloop has been developed in this document. The work has detailed two version of the Hyperloop: a passenger only version and a passenger plus vehicle version. Hyperloop could transport people, vehicles, and freight between Los Angeles and San Francisco in 35 minutes. Transporting 7.4 million people each way and amortizing the cost of $6 billion over 20 years gives a ticket price of $20 for a one-way trip for the passenger version of Hyperloop. The passenger plus vehicle version of the Hyperloop is less than 9% of the cost of the proposed passenger only high speed rail system between Los Angeles and San Francisco.

An additional passenger plus transport version of the Hyperloop has been created that is only 25% higher in cost than the passenger only version. This version would be capable of transport passengers, vehicles, freight, etc. The passenger plus vehicle version of the Hyperloop is less than 11% of the cost of the proposed passenger only high speed rail system between Los Angeles and San Francisco. Additional technological developments and further optimization could likely reduce this price.

The intent of this document has been to create a new open source form of transportation that could revolutionize travel. The authors welcome feedback and will incorporate it into future revisions of the Hyperloop project, following other open source models such as Linux.

The total cost of the Hyperloop passenger transportation system as outlined is less than $6 billion USD.

The passenger plus vehicle version of Hyperloop is including both passenger and cargo capsules and the total cost is outlined as $7.5 billion USD

Propulsion for Passenger Plus Vehicle System

Compared to the passenger-only capsule, the passenger plus vehicle capsule weighs more, requires a more powerful compressor, and has 50% higher total drag. This increases both the peak and continuous power requirements on the propulsion system, so that the Hyperloop now consumes an average of 66,000 hp (49 MW). However, there is still more than enough solar power available on the wider tubes (122,000 hp or 91 MW, on average) to provide this.

The expected total cost for this larger propulsion system is $691 million USD, divided as follows:
-66,000 hp (49 MW) (yearly average) solar array: $490 million USD
– Propulsion system total: $200 million USD
o Stator and structure materials = 47%
o Power electronics = 37%
o Energy storage = 16%

Future Work
Hyperloop is considered an open source transportation concept. The authors encourage all members of the community to contribute to the Hyperloop design process. Iteration of the design by various individuals and groups can help bring Hyperloop from an idea to a reality.

The authors recognize the need for additional work, including but not limited to:

1.More expansion on the control mechanism for Hyperloop capsules, including attitude thruster or control moment gyros.

2. Detailed station designs with loading and unloading of both passenger and passenger plus vehicle versions of the Hyperloop capsules.

3. Trades comparing the costs and benefits of Hyperloop with more conventional magnetic levitation systems.

4. Sub-scale testing based on a further optimized design to demonstrate
the physics of Hyperloop.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks