Surprise Lockheed Figured out how to make hypersonic planes work and there could be a mach 6 SR-72 spyplane flying by 2018

The SR-71 Blackbird was retired from U.S. Air Force service almost two decades ago, the perennial question has been: Will it ever be succeeded by a new-generation, higher-speed aircraft and, if so, when?

Hypersonic flights tests were way more successful than advertised

Skunk Works has been working with Aerojet Rocketdyne for the past seven years to develop a method to integrate an off-the-shelf turbine with a scramjet to power the aircraft from standstill to Mach 6 plus,” says Brad Leland, portfolio manager for air-breathing hypersonic technologies. “Our approach builds on HTV-3X, but this extends a lot beyond that and addresses the one key technical issue that remained on that program: the high-speed turbine engine,” he adds, referring to the U.S. Air Force/Defense Advanced Research Projects Agency (Darpa) reusable hypersonic demonstrator canceled in 2008.

Despite never progressing to what Leland describes as a planned -HTV-3X follow-on demonstrator that “never was,” called the Blackswift, the conceptual design work led to “several key accomplishments which we didn’t advertise too much,” he notes. “It produced an aircraft configuration that could controllably take off, accelerate through subsonic, supersonic, transonic and hypersonic speeds. It was controllable and kept the pointy end forward,” adds Leland.

If they deliver then reusable first stage spaceplanes would be feasible

This could also give a big boost to spaceplane systems like Reaction Engine’s Skylon

More on what SR-72 will do

Lockheed Martin’s Skunk Works has revealed exclusively to Aviation Week details of long-running plans for what it describes as an affordable hypersonic intelligence, surveillance and reconnaissance (ISR) and strike platform that could enter development in demonstrator form as soon as 2018. Dubbed the SR-72, the twin-engine aircraft is designed for a Mach 6 cruise, around twice the speed of its forebear, and will have the optional capability to strike targets.

Guided by the U.S. Air Force’s long-term hypersonic road map, the SR-72 is designed to fill what are perceived by defense planners as growing gaps in coverage of fast-reaction intelligence by the plethora of satellites, subsonic manned and unmanned platforms meant to replace the SR-71. Potentially dangerous and increasingly mobile threats are emerging in areas of denied or contested airspace, in countries with sophisticated air defenses and detailed knowledge of satellite movements.

A vehicle penetrating at high altitude and Mach 6, a speed viewed by Lockheed Martin as the “sweet spot” for practical air-breathing hypersonics, is expected to survive where even stealthy, advanced subsonic or supersonic aircraft and unmanned vehicles might not. Moreover, an armed ISR platform would also have the ability to strike targets before they could hide.

Mach 4 turbine bridges the gap to scramjet speeds

The Skunk Works design team developed a methodology for integrating a working, practical turbine-based combined cycle (TBCC) propulsion system. “Before that, it was all cartoons,” Leland says. “We actually developed a way of transforming it from a turbojet to a ramjet and back. We did a lot of tests to prove it out, including the first mode-transition demonstration.” The Skunk Works conducted subscale ground tests of the TBCC under the Facet program, which combined a small high-Mach turbojet with a dual-mode ramjet/scramjet, and the two sharing an axisymmetric inlet and nozzle.

Meanwhile, the U.S. Air Force Research Laboratory’s parallel HiSTED (High-Speed Turbine Engine Demonstration) program essentially failed to produce a small turbojet capable of speeds up to Mach 4 in a TBCC. “The high-speed turbine engine was the one technical issue remaining. Frankly, they just weren’t ready,” recalls Leland. This left the Skunk Work designers with a familiar problem: how to bridge the gap between the Mach 2.5 maximum speed of current-production turbine engines and the Mach 3-3.5 takeover speed of the ramjet/scramjet. “We call it the thrust chasm around Mach 3,” he adds.

Although further studies were conducted after the demise of the HTV-3X under the follow-on Darpa Mode-Transition program, that fell by the wayside, too, after completion of a TBCC engine model in 2009-10. So, Lockheed Martin and Aerojet Rocketdyne “sat down as two companies and asked ourselves, ‘Can we make it work? What are we still missing?’” says Leland. “A Mach 4 turbine is what gets you there, and we’ve been working with Rocketdyne on this problem for the last seven years.”

The path to the SR-72 would begin with an optionally piloted flight research vehicle (FRV), measuring around 60 ft. long and powered by a single, but full-scale, propulsion flowpath. “The demonstrator is about the size of the F-22, single-engined and could fly for several minutes at Mach 6,” says Leland. The outline plan for the operational vehicle, the SR-72, is a twin-engine unmanned aircraft over 100 ft. long (see artist’s concept on page 20). “It will be about the size of the SR-71 and have the same range, but have twice the speed,” he adds. The FRV would start in 2018 and fly in 2023. “We would be ready to launch the SR-72 shortly after and could be in service by 2030,” Leland says.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

Leave a Comment