How to raise a genius: lessons from a 45-year study of super-smart children – Intellectual 1% control society

There was a 45 year Study of Mathematically Precocious Youth (SMPY). It has transformed how gifted children are identified and supported by the US education system. As the longest-running current longitudinal survey of intellectually talented children, SMPY has for 45 years tracked the careers and accomplishments of some 5,000 individuals, many of whom have gone on to become high-achieving scientists. The study’s ever-growing data set has generated more than 400 papers and several books, and provided key insights into how to spot and develop talent in science, technology, engineering, mathematics (STEM) and beyond.

Professor Julian Stanley ran the program.

“What Julian wanted to know was, how do you find the kids with the highest potential for excellence in what we now call STEM, and how do you boost the chance that they’ll reach that potential,” says Camilla Benbow, a protégé of Stanley’s who is now dean of education and human development at Vanderbilt University in Nashville, Tennessee. But Stanley wasn’t interested in just studying bright children; he wanted to nurture their intellect and enhance the odds that they would change the world. His motto, he told his graduate students, was “no more dry bones methodology”.

At the start, both the study and the centre were open to young adolescents who scored in the top 1% on university entrance exams. Pioneering mathematicians Terence Tao and Lenhard Ng were one-percenters, as were Facebook’s Mark Zuckerberg, Google co-founder Sergey Brin and musician Stefani Germanotta (Lady Gaga), who all passed through the Hopkins centre.

“The kids who test in the top 1% tend to become our eminent scientists and academics, our Fortune 500 CEOs and federal judges, senators and billionaires,” he says.

SMPY suggests that early cognitive ability has more effect on achievement than either deliberate practice or environmental factors such as socio-economic status.

Researchers offer the following tips to encourage both achievement and happiness for smart children.

  • Expose children to diverse experiences.
  • When a child exhibits strong interests or talents, provide opportunities to develop them.
  • Support both intellectual and emotional needs.
  • Help children to develop a ‘growth mindset’ by praising effort, not ability.
  • Encourage children to take intellectual risks and to be open to failures that help them learn.
  • Beware of labels: being identified as gifted can be an emotional burden.
  • Work with teachers to meet your child’s needs. Smart students often need more-challenging material, extra support or the freedom to learn at their own pace.
  • Have your child’s abilities tested. This can support a parent’s arguments for more-advanced work, and can reveal issues such as dyslexia, attention-deficit/hyperactivity disorder, or social and emotional challenges.

Spatial Ability

Stanley was curious about whether spatial ability might better predict educational and occupational outcomes than could measures of quantitative and verbal reasoning on their own.

Follow-up surveys — at ages 18, 23, 33 and 48 — backed up his hunch. A 2013 analysis found a correlation between the number of patents and peer-refereed publications that people had produced and their earlier scores on SATs and spatial-ability tests. The SAT tests jointly accounted for about 11% of the variance; spatial ability accounted for an additional 7.6%.

Spatial ability plays a major part in creativity and technical innovation. “I think it may be the largest known untapped source of human potential,” says Lubinski, who adds that students who are only marginally impressive in mathematics or verbal ability but high in spatial ability often make exceptional engineers, architects and surgeons. “And yet, no admissions directors I know of are looking at this, and it’s generally overlooked in school-based assessments.”

“They’re just developing different talents,” says Lubinski, a former high-school and college wrestler. “But our society has been much more encouraging of athletic talents than we are of intellectual talents.”

And yet these gifted students, the ‘mathletes’ of the world, can shape the future. “When you look at the issues facing society now — whether it’s health care, climate change, terrorism, energy — these are the kids who have the most potential to solve these problems,” says Lubinski. “These are the kids we’d do well to bet on.”

SOURCE- Nature