New Superconductor With Highest Critical Current for Its Type of Superconductor

A research team from Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences (CAS), discovered a new superconducting material called (InSe2)xNbSe2, which possesses a unique lattice structure. The superconducting transition temperature of this material reaches 11.6 K, making it the transition metal sulfide superconductor with the highest transition temperature under ambient pressure.

TMD materials have received lots of attention due to the numerous applications in the fields of catalysis, energy storage, and integrated circuit. However, the relatively low superconducting transition temperatures of TMD superconductors have limited their potential use.

In this study, scientists successfully fabricated a new superconducting material with the chemical formula (InSe2)xNbSe2. Unlike the conventional conditions where isolated atoms are inserted into the van de Waals gaps of low dimensional materials, in (InSe2)xNbSe2 the intercalated indium atoms were found to form InSe2-bonded chains.

“This material has very high transition temperature among all transition metal dichalcogenide (TMD) superconductors,” said Prof. ZHANG Changjin, who led the team, “and it exhibits an impressive critical current density.”

The superconducting transition temperature of the (InSe2)0.12NbSe2 sample could be as high as 11.6 K at ambient pressure, which is 60% higher than that of pristine NbSe2.

The materials are crystallized in a unique layered structure where bonded InSe2 layers are intercalated into the van der Waals gaps of 2H-phase NbSe2. The (InSe2)0.12NbSe2 superconductor exhibits a superconducting transition at 11.6 K and critical current density of 820000 Amps per square centimeter. Both values are the highest among all transition metal dichalcogenide superconductors at ambient pressure. The present finding provides an ideal material platform for further investigation of superconducting-related phenomena in transition metal dichalcogenides.

It is a lot more practical and lower cost to cool to 11K than it is to cool to 7K. It is probably about 4 times cheaper, based upon information from a 2015 paper.

Furthermore, the (InSe2)xNbSe2 superconductor exhibits large critical current density of 8×105 A/cm2, which is also the highest among all TMD superconductors. The critical current density is comparable with high temperature superconductors such as cuprate and iron-based compounds, demonstrating its good application prospects.

1 thought on “New Superconductor With Highest Critical Current for Its Type of Superconductor”

  1. Suddenly new superconductor compounds are falling out of the sky. Until this is replicated in labs across world I’m gonna stay extremely unexcited.

Comments are closed.