Supercompressed silicon and hydrogen superconducts at room temperature

A new superconducting material fabricated by a Canadian-German team has been fabricated out of a silicon-hydrogen compound [after supercompression, 96-120GPa] and does not require cooling. They had to keep the material under pressure (100GPa) in order to get it to superconduct.

CORRECTION: The press release talked about not using refrigerant and EEtimes said room temperature superconductor. They believe that the new silane / hydrogen compounds could reach room temperature superconducting levels. The temperature at which superconductivity occurs exhibits some interesting behavior. It hangs around 5-10K for most of the pressure range (50-200GPa), but in a small range between 100-125GPa, it increases quite sharply. Although the researchers only have five data points in the range and never observed a critical temperature higher than 20K, the shape of the curve indicates that, for some small range of pressures, a very high critical temperature might be achieved. So they still have to investigate the critical pressure range and possibly other compounds and still get them to work after pressure is removed. The other unpressurized material which could be superconducting at 185K are closer to being possible improved application, but they need some more independent confirmations.

So there is still work to do to make this more practical. Figure out a way to quench the metal such that it stays and metal and superconducting when pressure is removed or figure out a better but similar material. There is also the early word on the non-pressurized advances to -87C. This is at the cusp of a decent lab freezer, that easily go down to -86C. A lot of improvement and activity in the area of superconducting material seems to be happening now.

ANOTHER UPDATE
Fullerenes could theoretically be loaded with hydrogen (or other gases like silane) into the range of the correct pressure. The problem is still being able to do it and what the actual peak critical temperature is at optimal pressure The best route is probably to learn more about superconductors from these materials and then figure out a better compound that does not require these extreme efforts.

UPDATE: 3 page pdf on the methods used for the experiment.

We have used diamond anvil cell equipped with beveled diamonds and gasket made of cubic BN powder mixed with epoxy. Commercial silane of 99.99% purity (Air Liquide) was loaded trough capillaries into a small cavity surrounding diamonds where it was condensed at ≈112-150 K. All the system was carefully checked with a helium leak detector to be ensured the absolute tightness − a necessary precaution because silane is a pyrophoric substance.

Decomposition can indeed occur when silane was loaded at P

About The Author

Add comment

E-mail is already registered on the site. Please use the Login form or enter another.

You entered an incorrect username or password

Sorry, you must be logged in to post a comment.

1 comment

by Newest
by Best by Newest by Oldest
1

Hi Brian,

would you consider doing an interview with me about your vision for future spaceflight and industry? I would try to get it posted at Americanantigravity.com as I am friends with the website owner, Tim Ventura.

If you are interested please e-mail me at [email protected]

Thanks,

Bon Kuhlman aka Sigma