Inertial Confinement Fusion update

At the end of this lengthy MSNBC article is some information about the Bussard fusion process where researchers are building a new demonstration system WB7

One interesting point is that the University of Wisconsin has 100 people and about 10 million in budget per year that is devoted inertial confinement fusion. They are obviously aware of the Bussard approach. It would seem obvious that they would try to adjust their own setups to try to achieve the potentially greater efficiency. Also, if the EMC2 fusion [bussard team] achieves success than the university of Wisconsin fusion department should be immediately trying to replicate and build on the work.

H/T Power and control

Currently, the most promising path toward electrostatic fusion runs through Santa Fe, N.M., where a team at EMC2 Fusion Development Corp. is currently trying to validate Bussard’s results. The team’s leader, Richard Nebel, told me this week that it’s still too early to gauge how promising the Bussard fusion device could be.

“We’re getting high-power plasma,” he said. “We don’t have answers … [but] we’re far enough along that we know we’re going to get answers.”

“We’re losing our lead to other countries in the world,” Gerald Kulcinski, director of the Fusion Technology Institute at the University of Wisconsin at Madison.

ITER’s path to fusion isn’t the only one [and EMC2 is not the only one working on inertial confinement fusion]: For more than three decades, the University of Wisconsin’s institute has focused its research not only on magnetic containment, but also on the other two “legs” of fusion research: laser-powered inertial confinement, which is to be developed in the United States at the National Ignition Facility; and inertial electrostatic fusion, which has been in the news recently due to the work of the late physicist/engineer Robert Bussard.

The institute is funded to the tune of about $15 million a year, with 150 people working on fusion, Kulcinski said. Inertial confinement fusion currently accounts for about two-thirds of the technology development work being done at the institute.

If Kulcinski had to pick a favorite in the decades-long fusion marathon, it might well be the dark horse in the race: electrostatic fusion, which involves packing ions densely within a negatively charged grid or a cloud of electrons. He and his colleagues have been experimenting with electrostatic grid reactors for years.

“We’re not even close to break-even,” Kulcinski said. But the devices do produce enough high-energy protons to create short-lived radioisotopes for medical applications.

Kulcinski foresees a day when every hospital could have its own little fusion reactor churning out oxygen-15 and other isotopes for diagnostic purposes. (Right now they’re created in cyclotrons.)

He said fusion devices could also be used to detect hidden nuclear weapons and buried explosive devices. They could even disable nuclear weapons. “We probably shouldn’t discuss that, but there are ways,” he said.

The real promise of the electrostatic devices, at least the way Kulcinski sees it, is that the electrostatic devices can be used for fusion reactions using helium-3. His group has been experimenting with a deuterium-helium-3 combination as well as with pure helium-3.

About 40 tons of helium-3 would produce all the electricity we use in the United States in 2008.

He sees electrostatic fusion reactors using helium-3 as the best long-term option. “We could put the thing right downtown,” he said.

FURTHER READING
There is a new writeup[H/T again to Power and Control and IECfusiontech] by Tom Ligon which discusses the inertial confinement fusion work and theory of the Bussard fusion team.

Another online writeup is at Dailykos.

I have covered the Bussard IEC fusions potential before

And I have been following its development closely

This has the potential to be a huge game changer for energy and technology in general.

About The Author

Add comment

E-mail is already registered on the site. Please use the Login form or enter another.

You entered an incorrect username or password

Sorry, you must be logged in to post a comment.

8 comments

by Newest
by Best by Newest by Oldest
1

wow...wow..and double wow - about time there was an advancement in processing speed... but the big question - will it play WoW (World of Warcraft)...?

2

for computational chemisty (like what Robert Freitas needs) I think they have to wait until Q4, 2007 or next year for two things

1. double precision floating point expected Q4 2007

2. Probably ports of the computational chemistry software. Most of the packages are written in Fortran.

there are some packages written in
c and fortran

Such as gaussian.
http://www.gaussian.com/g03_plat.htm

3

My latest http://advancednano.blogspot.com/2007/06/more-specifications-of-nvidia-tesla.html" REL="nofollow">article has some more Nvidia specs and has links to the work and discussion about opening the drivers

4

I added a bunch of links in the Further Reading section to nvidia developers library, wikipedia take on the state of general purpose GPUs and some open source work with GPUs.

It looks like this will be more widely applicable than I originally thought.

5

I had a link and an article about the AMD/ATI fusion chip.
The concern with that is if AMD can still pull that off given the financial pounding that it is taking from Intel.

I think the General purpose GPU will have a more open program capability.

See the developer documentation and samples that nvidia provides
http://developer.nvidia.com/object/cuda.html

6

I wonder what kind of speed-up there is in AIMD, only NAMD/VMD is mentioned; I can't wait to find out. Also, I can't wait to see what Freitas and co. do with this, and of course, the AI community as well.

One thing though about GPU programming that bothers me is the requirement that all your code has to go through a driver. When you program for an Intel CPU, you get all the documentation you want. The world of GPUs is different. The graphics card makers don't want you to have direct access, because they enable/disable certain features depending on the market. Gamers get faster shaders that are less precise than the same chip in an computer animator's card which has more precision and better wire frame support.

I think you might see a real concerted effort by the open source community to come-up with their own drivers if the number of different price points for different markets gets out of hand. When that happens, you'll be able to turn any game card into a supercomputer for no extra cost!

Another thing to consider, is the ATI/AMD merger. There are plans to put CPU and GPU cores directly on the same die. That might give you another order of magnitude performance boost right there.

7

I agree it is amazing. But not all FLOPS are equal.

But for graphics and problems similar to graphics then Moore's law is being shattered.

Specialized processing systems like the Japan's petaflop MDGrape3 machine can be lot faster for particular problems.

If the problems that you are interested in are accelerated, then things are getting a lot better faster.

8

This is amazing!

So, 18 of these 2Tflop units will cost a total of $27K. And, their total compute performance is equivalent to the #1 rated supercomputer in the world in June of 2004?

Is this true, or am I missing something here? If this is true, Moore's Law is being shattered.