Volcanoes Eruptions Had Small Effects Before an Asteroid Killed Dinosaurs

Yale researchers have determined that the asteroid was the main cause of the death of dinosaurs.

Massive volcanic eruptions in India in the region known as the Deccan Traps happened well before the Cretaceous-Paleogene extinction event 66 million years ago and therefore did not contribute to the mass extinction.

They pinpointed the timing of volcanic gas emission by comparing global temperature change and the carbon isotopes (an isotope is an atom with a higher or lower number of neutrons than normal) from marine fossils with models of the climatic effect of CO2 release. They concluded that most of the gas release happened well before the asteroid impact — and that the asteroid was the sole driver of extinction.

Volcanic activity in the late Cretaceous caused a gradual global warming event of about two degrees, but not mass extinction.

Science – On impact and volcanism across the Cretaceous-Paleogene boundary

An impact with a dash of volcanism
Around the time of the end-Cretaceous mass extinction that wiped out dinosaurs, there was both a bolide impact and a large amount of volcanism. Hull et al. ran several temperature simulations based on different volcanic outgassing scenarios and compared them with temperature records across the extinction event. The best model fits to the data required most outgassing to occur before the impact. When combined with other lines of evidence, these models support an impact-driven extinction. However, volcanic gases may have played a role in shaping the rise of different species after the extinction event.

Abstract
The cause of the end-Cretaceous mass extinction is vigorously debated, owing to the occurrence of a very large bolide impact and flood basalt volcanism near the boundary. Disentangling their relative importance is complicated by uncertainty regarding kill mechanisms and the relative timing of volcanogenic outgassing, impact, and extinction. We used carbon cycle modeling and paleotemperature records to constrain the timing of volcanogenic outgassing. We found support for major outgassing beginning and ending distinctly before the impact, with only the impact coinciding with mass extinction and biologically amplified carbon cycle change. Our models show that these extinction-related carbon cycle changes would have allowed the ocean to absorb massive amounts of carbon dioxide, thus limiting the global warming otherwise expected from postextinction volcanism.

logo

Don’t miss the latest future news

Subscribe and get a FREE Ebook